40th International Conference on Production Engineering of Serbia
ICPES 2025
Nis, Serbia, 18-19th september 2025


COMPARISON OF LASER INTERFEROMETER SYSTEMS FOR MEASURING POSITIONAL ACCURACY OF MACHINE TOOLS

Alexander Buda Budimir, Slobodan Tabakovic, Milan Zeljkovic, Saša Živanovic, Zoran Dimic

DOI: 10.46793/ICPES25.446B


Abstract:

Laser interferometers have become indispensable tools in the high-precision calibration of machine tools, offering sub-micron resolution and enhanced measurement reliability. Since the introduction of stabilized helium–neon (He–Ne) lasers in the 1960s, manufacturers like Hewlett-Packard (HP), Renishaw, and Lasertex have developed systems with increasingly advanced capabilities. This paper presents a technical and historical comparison of three key interferometric systems: HP’s 5525A, Renishaw’s XL-80, and Lasertex’s HPI-3D. The analysis includes specifications such as laser stability, resolution, environmental compensation, and dynamic measurement capabilities. The HP 5525A, although historically significant, lacks modern portability and software integration. In contrast, Renishaw’s XL-80 offers compactness, advanced environmental compensation, and compatibility with international metrology standards. Lasertex’s HPI-3D introduces next-generation capabilities, such as real-time vibration analysis, nanometric resolution, and full 3D geometric evaluation. The comparative findings suggest a clear technological evolution toward higher precision, modularity, and software-driven diagnostics in laser interferometry

Keywords:

Laser interferometer, Machine tool accuracy, Displacement measurement, Positioning accuracy, Machine tool calibration

References:


[1] M. Frennberg, M. Johansson, S. Kaellberg, U. Karn, L. R. Pendrill: Long gauge block interferometer using two frequency-stabilized lasers, in: Recent Developments in Optical Gauge Block Metrology, Vol. 3477, SPIE, pp. 35–44, 1998.
[2] J. Flügge, S. Kroker, H. Schnatz: Fundamental length metrology, in: Handbook of Laser Technology and Applications, CRC Press, pp. 3–22, 2021.
[3] W. E. Barkman: Use of the laser interferometer for position feedback, in: Interferometry, Vol. 192, SPIE, pp. 98–104, December 1979.
[4] X. Li, X. Liu: Efficient identification of geometric errors in CNC machine tools based on dual-frequency laser interferometry, Journal of Measurements in Engineering, Vol. 12, No. 4, pp. 622–637, 2024.
[5] A. Budimir, S. Tabakovic, M. Zeljkovic: The influence of the movement method on the results of machine tool positioning accuracy analysis, Measurement Science Review, Vol. 23, No. 3, pp. 136–145, 2023.
[6] N. Kuprin, J. Švéda, Š. Chládek, T. Havlan, L. Novotný, J. Koubek: New device for rapid measurement of machine tool geometric errors, MM Science Journal, 2022.
[7] F. Zheng, Q. Feng, B. Zhang, J. Li, Y. Zhao: A high-precision laser method for directly and quickly measuring 21 geometric motion errors of three linear axes of computer numerical control machine tools, The International Journal of Advanced Manufacturing Technology, Vol. 109, pp. 1285–1296, 2020.
[8] M. Holub, J. Rosenfeld: Geometric accuracy of large machine tools, Acta Mech. Slovaca, Vol. 24, No. 3, pp. 56–62, 2020.
[9] R. Kneppers, A. R. Amstelveen: HP laser interferometers, Vaisala News, No. 151, pp. 34–37, 1999.
[10] Keysight Technologies history, available at: https://www.keysight.com/nl/en/about/keysight-technologies-history.html/1000?utm_source=chatgpt.com, accessed: 10.07.2025.
[11] Hewlett-Packard: Laser measurement, Brochure (print), 1984.
[12] XL-80 laser system, available at: https://www.renishaw.com/en/xl-80-laser-system--8268?srsltid=AfmBOoqcVyaCHzDxYb7DqpP8Wy40PgSTA1JQFFTxXJp0XDB74ZX3rdqq, accessed: 10.07.2025.
[13] Renishaw: XL-80 laser system
[Brochure]. Data sheet (online), 2004.
[14] HPI-3D laser system, available at: https://lasertex.eu/products/dmi-hpi-3d/, accessed: 10.07.2025.
[15] Lasertex: HPI-3D. Data sheet (print), 2025.