40th International Conference on Production Engineering of Serbia
ICPES 2025
Nis, Serbia, 18-19th september 2025
EFFECT OF LAYER HEIGHT ON GEOMETRIC ACCURACY OF FDM 3D PRINTED POROUS STRUCTURES
Nikola Kotorcevic, Fatima Živic, Petar Todorovic, Nenad Grujovic
DOI: 10.46793/ICPES25.422K
This paper investigated the influence of FDM 3D printing input parameters and presented short analysis of various parameters on some specific properties of the printed parts. We examined the effect of layer height on dimensional precision of the printed parts made of polylactic acid (PLA). We experimentally tested three different layer heights (0.16 mm, 0.20 mm, 0.24 mm) and their influence on the geometric accuracy, using cross hatch infill pattern at 70% infill density. Simple 3D model of the printed structure was created to evaluate the porosity in printed part, depending on the layer height. Experimental study, as well as the computational model, both indicated that layer height showed significant influence on the dimensional precision of the printed parts. Layer height as input parameter in 3D printing also impact the accuracy of internal infill structures
Additive manufacturing, FDM 3D printing, dimensional accuracy, layer height, Dragonfly software model
[1] B. S. Rupal, K. G. Mostafa, Y. Wang, and A. J. Qureshi, “A Reverse CAD Approach for Estimating Geometric and Mechanical Behavior of FDM Printed Parts,” Procedia Manuf., vol. 34, pp. 535–544, 2019, doi: 10.1016/j.promfg.2019.06.217.
[2] K. S. Patel, D. B. Shah, S. J. Joshi, F. K. Aldawood, and M. Kchaou, “Effect of process parameters on the mechanical performance of FDM printed carbon fiber reinforced PETG,” J. Mater. Res. Technol., vol. 30, pp. 8006–8018, May 2024, doi: 10.1016/j.jmrt.2024.05.184.
[3] N. Lokesh, B. A. Praveena, J. Sudheer Reddy, V. K. Vasu, and S. Vijaykumar, “Evaluation on effect of printing process parameter through Taguchi approach on mechanical properties of 3D printed PLA specimens using FDM at constant printing temperature,” Mater. Today Proc., vol. 52, pp. 1288–1293, 2022, doi: 10.1016/j.matpr.2021.11.054.
[4] S. Garzon-Hernandez, D. Garcia-Gonzalez, A. Jérusalem, and A. Arias, “Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties,” Mater. Des., vol. 188, p. 108414, Mar. 2020, doi: 10.1016/j.matdes.2019.108414.
[5] K. Almansoori and S. Pervaiz, “Effect of layer height, print speed and cell geometry on mechanical properties of marble PLA based 3D printed parts,” Smart Mater. Manuf., vol. 1, p. 100023, 2023, doi: 10.1016/j.smmf.2023.100023.
[6] S. Sahoo, H. Sutar, P. Senapati, B. Shankar Mohanto, P. Ranjan Dhal, and S. Kumar Baral, “Experimental investigation and optimization of the FDM process using PLA,” Mater. Today Proc., vol. 74, pp. 843–847, 2023, doi: 10.1016/j.matpr.2022.11.208.
[7] S. Khan, K. Joshi, and S. Deshmukh, “A comprehensive review on effect of printing parameters on mechanical properties of FDM printed parts,” Mater. Today Proc., vol. 50, pp. 2119–2127, 2022, doi: 10.1016/j.matpr.2021.09.433.
[8] A. Equbal, A. K. Sood, Md. I. Equbal, I. A. Badruddin, and Z. A. Khan, “RSM based investigation of compressive properties of FDM fabricated part,” CIRP J. Manuf. Sci. Technol., vol. 35, pp. 701–714, Nov. 2021, doi: 10.1016/j.cirpj.2021.08.004.
[9] K. Vijayananth, G. Pudhupalayam Muthukutti, A. Raju, and I. Barsoum, “Integrated optimization and prediction of mechanical properties in FDM printed polyamide/carbon fiber composites using PSI–VIKOR and ANN,” Mater., vol. 8, p. 11, 2025, doi: 10.1016/j.nxmate.2025.100932.
[10] N. A. Fountas, I. Papantoniou, J. D. Kechagias, D. E. Manolakos, and N. M. Vaxevanidis, “Modeling and optimization of flexural properties of FDM-processed PET-G specimens using RSM and GWO algorithm,” Eng. Fail. Anal., vol. 138, p. 106340, Aug. 2022, doi: 10.1016/j.engfailanal.2022.106340.
[11] M. R. Pratheesh Kumar, K. Saravanakumar, C. Arun Kumar, R. Saravanakumar, and B. Abimanyu, “Experimental investigation of the process parameters and print orientation on the dimensional accuracy of fused deposition modelling (FDM) processed carbon fiber reinforced ABS polymer parts,” Mater. Today Proc., vol. 98, pp. 166–173, 2024, doi: 10.1016/j.matpr.2023.10.062.
[12] S. Maurya, B. Malik, P. Sharma, A. Singh, and R. Chalisgaonkar, “Investigation of different parameters of cube printed using PLA by FDM 3D printer,” Mater. Today Proc., vol. 64, pp. 1217–1222, 2022, doi: 10.1016/j.matpr.2022.03.700.
[13] F. Zivic, S. Mitrovic, N. Grujovic, Z. Jovanovic, D. Dzunic, and S. Milenkovic, “The Influence of the 3D Printing Infill and Printing Direction on Friction and Wear of Polylactic Acid (PLA) under Rotational Sliding,” J. Frict. Wear, vol. 42, no. 2, pp. 106–111, Mar. 2021, doi: 10.3103/S1068366621020124.
[14] S. M. Mora, J. C. Gil, and A. M. Camacho López, “Influence of manufacturing parameters in the dimensional characteristics of ABS parts obtained by FDM using reverse engineering techniques,” Procedia Manuf., vol. 41, pp. 968–975, 2019, doi: 10.1016/j.promfg.2019.10.022.
[15] M. M. M. Haque et al., “Impact of process parameters and material selection on the mechanical performance of FDM 3D-Printed components,” Hybrid Adv., vol. 10, p. 100502, Sep. 2025, doi: 10.1016/j.hybadv.2025.100502.
[16] B. Kartikeyan, A. Ponshanmugakumar, G. Saravanan, S. BharathGanesh, and V. Hemamalini, “Experimental and theoretical analysis of FDM AM PLA mechanical properties,” Mater. Today Proc., May 2023, doi: 10.1016/j.matpr.2023.05.105.
[17] L. Kothandaraman and N. K. Balasubramanian, “Optimization of FDM printing parameters for square lattice structures: Improving mechanical characteristics,” Mater. Today Proc., Apr. 2024, doi: 10.1016/j.matpr.2024.04.033.
[18] M. N. Bashir et al., “Investigation of process parameter influence on the mechanical properties of FDM-printed PEEK-carbon fiber composites using RSM and Taguchi methods,” J. Mater. Res. Technol., vol. 36, pp. 10199–10209, May 2025, doi: 10.1016/j.jmrt.2025.05.217.
[19] M. Ramesh and K. Panneerselvam, “Mechanical investigation and optimization of parameter selection for Nylon material processed by FDM,” Mater. Today Proc., vol. 46, pp. 9303–9307, 2021, doi: 10.1016/j.matpr.2020.02.697.
[20] J. Giri, P. Shahane, S. Jachak, R. Chadge, and P. Giri, “Optimization of FDM process parameters for dual extruder 3d printer using Artificial Neural network,” Mater. Today Proc., vol. 43, pp. 3242–3249, 2021, doi: 10.1016/j.matpr.2021.01.899.
[21] N. Kotorcevic et al., “Material Extrusion 3D Printing of Micro-Porous Copper-Based Structure for Water Filters,” Machines, vol. 12, no. 7, p. 470, Jul. 2024, doi: 10.3390/machines12070470.
[22] N. Fijol and A. P. Mathew, “Accelerated ageing of 3D printed water purification filters based on PLA reinforced with green nanofibers,” Polym. Test., vol. 129, p. 108270, Dec. 2023, doi: 10.1016/j.polymertesting.2023.108270.
[23] N. Fijol, A. Aguilar-Sánchez, M.-X. Ruiz-Caldas, J. Redlinger-Pohn, A. Mautner, and A. P. Mathew, “3D printed polylactic acid (PLA) filters reinforced with polysaccharide nanofibers for metal ions capture and microplastics separation from water,” Chem. Eng. J., vol. 457, p. 141153, Feb. 2023, doi: 10.1016/j.cej.2022.141153.
[24] Y. F. Majd, M. S. G. Tsuzuki, and A. Barari, “A Machine Learning Approach to Find Density Percentage Error Resulting by Infill Patterns in Additive Manufacturing,” IFAC-Pap., vol. 56, no. 2, pp. 4740–4745, 2023, doi: 10.1016/j.ifacol.2023.10.1236.