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Abstract: The integration of artificial intelligence (AI) and machine learning (ML) into turning is 
transforming traditional manufacturing into a highly adaptive, data driven process. This review 
examines five key application areas, tool wear prediction, cutting force estimation, surface quality, 
energy consumption modeling and productivity optimization, highlighting the shift from static, 
empirical approaches to dynamic, hybrid frameworks that blend physics-based models with data 
driven algorithms. Advances in sensing technologies, digital twin platforms, and edge cloud 
integration now enable real time monitoring and multi objective optimization, enhancing both 
efficiency and sustainability. The analysis identifies multi modal data fusion, online adaptive 
learning, cross domain model transfer, and life cycle integrated decision making as emerging 
trends poised to drive the next generation of intelligent, sustainable, and self-optimizing turning 
systems. 
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1. INTRODUCTION  

Turning is one of the oldest and most 
fundamental machining processes, 
traditionally employed to remove excess 
material from a rotating workpiece in the 
form of chips. Due to its versatility, ability to 
achieve high dimensional accuracy, and 
capability to produce a wide range of 
cylindrical geometries, turning has remained a 

cornerstone of modern manufacturing 
technologies. Its efficiency in the production 
of cylindrical components, combined with the 
potential to deliver superior surface quality 
under both conventional and advanced 
cooling/lubrication conditions, makes it a 
preferred method for achieving precise 
dimensional tolerances and functional surface 
integrity in high performance applications [1]. 
Industrial demand for components that can 
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be most efficiently produced by turning, such 
as shafts, bushings, and precision cylindrical 
parts, has solidified its role as a primary metal 
cutting process in various sectors, including 
automotive, aerospace, and energy [2]. 

In a typical turning operation, the 
workpiece is held and rotated by the spindle 
while a single point cutting tool removes 
material by traversing parallel (Z axis) or 
perpendicular (X axis) to the axis of rotation 
[3]. Critical process parameters, such as 
cutting speed, feed rate, and depth of cut, 
directly influence machining efficiency, 
surface finish, tool wear, and overall 
productivity. These parameters must be 
carefully selected and optimized according to 
material properties, cutting tool 
characteristics, and required tolerances to 
achieve an effective balance between 
productivity and quality [4], [5]. Improper 
selection of these parameters can lead to 
excessive tool wear, poor surface integrity, 
and reduced material removal rate, ultimately 
increasing production costs. 

Beyond its traditional role, turning has 
undergone continuous technological 
advancements, integrating high performance 
cutting tools, computer aided design and 
manufacturing (CAD/CAM) systems, and real 
time process monitoring. The introduction of 
coated carbide, cermet, and ceramic tools has 
extended cutting tool life while enabling 
higher cutting speeds and feeds, thereby 
improving overall process efficiency [6]. 
Additionally, the integration of advanced CNC 
control systems has enabled the 
implementation of adaptive control 
strategies, allowing for real time adjustment 
of cutting parameters in response to tool wear 
or varying workpiece conditions. 

Artificial Intelligence (AI) refers to the 
ability of computer systems to perform tasks 
that typically require human cognitive 
functions, such as perception, reasoning, 
learning, and problem solving. It encompasses 
a wide range of subfields, including natural 
language processing, computer vision, and 
robotics, each aimed at enabling machines to 
make informed decisions and adapt to 

changing conditions. Machine Learning (ML), 
a subset of AI, focuses specifically on 
algorithms that learn patterns from data to 
improve their performance over time without 
explicit reprogramming [7]. These algorithms 
range from simple linear regression models to 
complex deep learning architectures capable 
of processing high dimensional datasets. 

In the context of manufacturing, both AI 
and ML rely heavily on data collected from a 
wide variety of sources. Typical industrial data 
streams originate from sensors monitoring 
temperature, vibration, acoustic emission, 
cutting forces, and other process variables, as 
well as from control systems, computer aided 
manufacturing (CAM) platforms, and 
enterprise resource planning (ERP) 
databases[8]. The quality and structure of this 
data directly influences model accuracy, 
making preprocessing steps, such as noise 
reduction, normalization, and feature 
extraction, essential [9]. Properly processed 
data enables predictive analytics for tasks like 
process optimization, tool condition 
monitoring, and quality assurance, 
transforming raw measurements into 
actionable intelligence that supports 
autonomous and adaptive manufacturing 
systems. 

The evolution of turning from a 
conventional metal cutting operation to an 
intelligent, data driven process reflects the 
broader transformation occurring in 
manufacturing under the influence of Industry 
4.0 technologies. While fundamental 
knowledge of process kinematics, material 
behavior, and parameter optimization 
remains critical, the integration of AI and ML 
offers opportunities for enhancing precision, 
productivity, and adaptability. By leveraging 
multi source sensor data, advanced 
algorithms can accurately predict process 
outcomes, detect anomalies, and adapt 
control strategies in real time, thereby 
minimizing waste and maximizing efficiency 
[10]. This convergence of traditional 
machining expertise with computational 
intelligence establishes a foundation for 
developing robust, autonomous turning 
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systems capable of meeting the growing 
demands for high quality, cost effective, and 
sustainable manufacturing. Against this 
backdrop, the present work aims to explore 
and advance AI and ML based approaches for 
turning process optimization. 

2. APPLICATION OF AI AND ML IN TURNING 
MACHINING 

2.1 Tool wear prediction 

Tool wear prediction remains a central 
challenge in modern turning, directly affecting 
dimensional accuracy, surface integrity, tool 
life, and costs. In practical manufacturing 
environments, researchers are increasingly 
combining AI techniques with multi sensor 
monitoring systems to capture and anticipate 
wear progression as it unfolds on the shop 
floor. Such approaches often employ 
vibration, acoustic emission, spindle power, 
and cutting force signals, which are processed 
through advanced signal analysis methods 
and fed into machine learning models for 
accurate wear estimation [11]. By correlating 
sensor features with the actual wear state, 
researchers have demonstrated that AI driven 
methods can significantly outperform 
conventional threshold-based monitoring 
strategies in both prediction accuracy and 
adaptability to changing cutting conditions. 

In addition to data driven models, hybrid 
approaches have been developed, combining 
physics-based wear models with AI algorithms 
to leverage the strengths of both domains 
[12]. These methods benefit from the 
interpretability of mechanistic models while 
gaining the flexibility of ML to adapt to 
complex and nonlinear wear patterns. Studies 
have shown that the fusion of physical insights 
with advanced regression or classification 
models enables a more robust prediction 
framework, particularly under variable 
machining parameters. Furthermore, the 
adoption of deep learning architectures, such 
as convolutional neural networks and 
recurrent neural networks, has enabled 
automatic feature extraction from raw signal 
data, reducing the reliance on manual feature 

engineering and improving generalization to 
unseen machining scenarios [13]. 

Another emerging direction is the 
utilization of cloud based and digital twin 
systems for tool wear prediction. By 
integrating sensor data into a virtual replica of 
the machining process, digital twins can 
continuously update the tool wear model 
based on real time inputs, thereby allowing 
adaptive process control [14]. This integration 
not only supports predictive maintenance but 
also enables optimization of cutting 
parameters to prolong tool life.  

Some implementations have used 
streamlined neural architectures, such as 
pruned convolutional networks or compact 
gradient boosted ensembles, embedded 
directly into CNC controllers. These designs 
process sensor data locally, delivering wear 
state updates within milliseconds, and avoid 
the bandwidth load of constant cloud 
communication [15]. 

2.2 Cutting force 

Cutting force prediction plays a decisive 
role in maintaining process stability and 
achieving consistent productivity. A growing 
body of work now explores hybrid AI models 
that merge physical process knowledge with 
adaptive learning strategies, enabling force 
estimation to remain accurate even under 
fluctuating machining conditions. One 
notable approach integrates mechanistic 
force models derived from cutting mechanics 
with data driven adjustment layers, producing 
hybrid systems that substantially improve 
prediction accuracy across variable machining 
regimes. This synergy supports robust 
predictions even when tool geometry, 
material properties, or machining conditions 
deviate from nominal parameters, providing 
flexibility without sacrificing interpretability 
[16]. 

Beyond hybrid frameworks, purely data 
driven methods have demonstrated 
exceptional adaptability and precision, 
particularly through deep learning. Multi-
layer neural networks, including convolutional 
and recurrent architectures, have become 
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especially adept at modeling the nonlinear, 
time dependent behavior of cutting forces. 
These models leverage large sensor datasets, 
captured from vibration, spindle load, 
acoustic emissions, or torque signals, to learn 
complex patterns that standard regression 
models struggle to detect. Their increasing 
accuracy and real time applicability mark 
them as critical tools for modern, intelligent 
machining systems [17]. 

Some studies have explored pairing live 
force measurements with virtual machining 
environments that update in real time. This 
approach allows the simulation to mirror the 
evolving cutting process, enabling immediate 
adjustments to feed rate or spindle speed 
when force spikes are predicted. This setup 
enables predictive control strategies such as 
adaptive feed rate optimization and proactive 
tool path adjustment, helping to minimize 
undesired force spikes and mitigate chatter. 
Cloud integration also offers scalable 
computational support and facilitates cross 
machine learning adaptations, ultimately 
helping to standardize performance across 
diverse setups [18]. 

At the same time, there’s growing interest 
in low latency, on edge inference solutions. 
Lightweight AI models, such as pruned neural 
networks or compact ensemble learners, are 
being optimized for real time deployment 
directly on CNC controllers. These solutions 
address the imperative for fast, reliable 
cutting force feedback without overloading 
communication channels or cloud 
infrastructure, paving the way for closed loop 
control even in resource constrained 
environments [19]. 

2.3 Surface quality prediction 

Surface quality, commonly expressed 
through roughness parameters, remains a 
defining factor in part performance, 
influencing everything from assembly 
precision to service life. Increasingly, AI driven 
predictive models are being used to process 
real time sensor data, enabling proactive 
adjustments that keep surface finish within 
tight specification limits. By extracting 

features from spindle power, acoustic 
emissions, and vibration signals, these models 
can forecast surface roughness with 
noteworthy accuracy, enabling immediate on 
the fly adjustments to maintain desired finish 
standards [20]. 

Hybrid modeling approaches, integrating 
mechanistic surface generation models with 
machine learning corrections, have proven 
particularly robust. Mechanistic models 
capture the foundational physics of tool–
workpiece interaction, while the data driven 
layer compensates for complex, real world 
non idealities such as tool vibration, material 
heterogeneity, and tool wear. This dual layer 
strategy enhances reliability across varied 
cutting conditions without sacrificing model 
interpretability [21]. 

Researchers have tested edge optimized 
predictors, including MobileNet style 
convolutional models and reduced tree 
ensembles, which can run on embedded 
controllers. This setup enables the control 
system to adjust spindle speed or feed rate 
almost instantly when the forecasted surface 
finish begins to drift. This enables real time 
roughness prediction and closed loop 
adjustment of feed rates or spindle speeds, all 
with minimal latency and without reliance on 
cloud back ends [22]. 

Certain research groups are experimenting 
with virtual process replicas that continuously 
incorporate live surface finish measurements. 
These replicas can forecast how surface 
quality will evolve if current parameters are 
maintained, helping engineers intervene 
before defects occur. By pairing live sensor 
streams with virtual replicas of the machining 
process, predictive roughness models can 
self-update continuously, adapting to tool 
wear progression, changes in material 
behavior, or shifts in ambient conditions. This 
enables not only predictive quality control but 
also long-term process optimization across 
tool life and across multiple machines [23]. 

Finally, a practical direction gaining 
traction is the use of transfer learning or few 
shot adaptations for surface quality models. 
Pretrained models, developed on datasets 
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from one material or machine, can be swiftly 
adapted to new setups using minimal new 
data, significantly reducing the cost of model 
deployment in varied production 
environments [24]. 

2.4 Energy consumption prediction 

In the drive toward sustainable 
manufacturing, predicting and optimizing 
energy consumption in CNC turning has 
gained strategic importance. Recent studies 
show that targeting specific cutting energy 
through parameter optimization can yield 
significant efficiency gains without sacrificing 
throughput or part quality. These approaches 
often involve fine tuning of machining 
parameters, such as cutting speed, feed rate, 
and depth of cut, using advanced optimization 
algorithms to minimize energy use without 
compromising productivity or quality [25]. 

Artificial intelligence techniques, 
particularly artificial neural networks (ANNs), 
have emerged as powerful tools for modeling 
and predicting energy consumption under 
varying cutting conditions. By leveraging multi 
sensor inputs and historical machining data, 
these models can capture the nonlinear 
relationships between process parameters 
and energy demand, enabling real time 
adjustments for optimal efficiency. Hybrid 
frameworks that combine ANN prediction 
with control and monitoring systems allow for 
dynamic recalibration of parameters during 
turning operations [26]. 

Sustainability focused studies further 
extend prediction models by incorporating 
specific cutting energy into multi objective 
optimization. This approach simultaneously 
targets energy efficiency, tool wear reduction, 
and overall process sustainability, particularly 
when using advanced techniques like 
minimum quantity lubrication (MQL). By 
integrating such lubrication strategies into 
predictive models, researchers have achieved 
significant reductions in energy usage 
alongside improvements in surface quality 
and tool life [27]. 

The inclusion of environmentally friendly 
lubricants, such as vegetable based MQL 

fluids, adds an ecological dimension to energy 
consumption optimization. In such cases, ANN 
based multi objective optimization 
frameworks can balance surface roughness, 
energy consumption, carbon emissions, and 
machining cost, providing a comprehensive 
decision-making tool for sustainable CNC 
turning [28]. 

Finally, recent advancements also highlight 
the role of material specific and process 
specific studies in energy consumption 
modeling. Tailored models that account for 
unique properties of workpiece materials, 
cutting tools, and machining setups can 
further enhance prediction accuracy, enabling 
a transition toward fully adaptive, sustainable, 
and energy aware manufacturing systems 
[29]. 

2.5 Productivity 

Maximizing productivity in turning, 
whether measured as MRR, parts per hour, or 
effective throughput, remains a priority for 
competitive manufacturing. New AI driven 
modeling approaches are proving valuable in 
mapping the complex relationships between 
cutting parameters and real-world output, 
allowing for informed, high impact 
adjustments. By utilizing operational data 
streams, such as spindle power, feed rate, and 
machining cycles, these models can predict 
productivity with high fidelity, enabling 
proactive adjustments to maximize output 
without compromising quality [30]. 

Hybrid modeling approaches that combine 
mechanistic productivity estimators with data 
driven optimization layers show considerable 
promise. The mechanistic models provide 
baseline output estimates grounded in tool 
workpiece geometry and cutting mechanics, 
while machine learning corrections account 
for real world inefficiencies, like operator 
intervention, tool wear, or thermal deflection. 
This fosters a resilient productivity forecast 
that adapts to dynamic shop floor conditions 
[31]. 

Advanced optimization frameworks 
further elevate productivity prediction by 
integrating multi objective considerations. For 
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example, productivity models are now 
designed to simultaneously balance output 
rate, energy consumption, and surface 
quality. These systems typically employ 
evolutionary algorithms, ANN based 
controllers, or reinforcement learning agents 
to discover optimal operating points that 
satisfy multiple production goals concurrently 
offering a comprehensive toolkit for 
sustainable, high efficiency machining [32]. 

Moreover, the rise of digital twin platforms 
and real time simulation has enhanced 
productivity modeling capabilities. By 
continuously integrating live sensor data into 
virtual replicas of the machining process, 
these systems can simulate “what if” 
scenarios in real time testing parameter shifts 
or tooling changes before committing them to 
actual production. This enables adaptive 
control strategies that autonomously enhance 
throughput while maintaining part quality and 
tool life [33].‚ 

 
 

3. FUTURE DIRECTIONS 

The evolution of AI and ML in turning will 
increasingly center on multi modal sensor fusion, 
combining acoustic, vibration, force, 
temperature, and vision data into unified process 
models. This integration will strengthen multi 
objective optimization, balancing quality, 
throughput, energy consumption, and tool life in 
real time. Online adaptive learning will replace 
static deployments, enabling continuous 
recalibration as tools wear, materials vary, and 
environmental conditions change. Transfer 
learning will reduce the cost and time of 
implementation across diverse machines and 
materials. On the sustainability front, integrating 
life cycle assessment (LCA) into optimization 
frameworks will make environmental impact a 
standard decision-making parameter. The 
convergence of digital twins with hybrid edge–
cloud architectures will support distributed, 
predictive, and self-optimizing manufacturing 
networks, aligning with Industry 4.0 and paving 
the way toward Industry 5.0. 

 

4. CONCLUSION 

This review demonstrates that AI  and ML 
based approaches, particularly hybrid models, are 
redefining predictive modeling in turning. 
Advances in tool wear, cutting force, and surface 
quality prediction are enabling real time control, 
while machining time models are closing the gap 
between CAM estimates and shop floor realities. 
Energy consumption modeling now integrates 
sustainability goals, and productivity optimization 
is evolving into a multi objective discipline. 
Collectively, these developments signal a 
transition toward intelligent, connected, and 
environmentally responsible machining systems, 
where adaptive algorithms, real time feedback, 
and digital twins converge to deliver high 
performance, resilient manufacturing in dynamic 
industrial environments. 
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