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Abstract: The integration of artificial intelligence (Al) and machine learning (ML) into turning is
transforming traditional manufacturing into a highly adaptive, data driven process. This review
examines five key application areas, tool wear prediction, cutting force estimation, surface quality,
energy consumption modeling and productivity optimization, highlighting the shift from static,
empirical approaches to dynamic, hybrid frameworks that blend physics-based models with data
driven algorithms. Advances in sensing technologies, digital twin platforms, and edge cloud
integration now enable real time monitoring and multi objective optimization, enhancing both
efficiency and sustainability. The analysis identifies multi modal data fusion, online adaptive
learning, cross domain model transfer, and life cycle integrated decision making as emerging
trends poised to drive the next generation of intelligent, sustainable, and self-optimizing turning
systems.
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cornerstone of modern

manufacturing

Turning is one of the oldest and most
fundamental machining processes,
traditionally employed to remove excess
material from a rotating workpiece in the
form of chips. Due to its versatility, ability to
achieve high dimensional accuracy, and
capability to produce a wide range of
cylindrical geometries, turning has remained a
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technologies. Its efficiency in the production
of cylindrical components, combined with the
potential to deliver superior surface quality
under both conventional and advanced
cooling/lubrication conditions, makes it a
preferred method for achieving precise
dimensional tolerances and functional surface
integrity in high performance applications [1].
Industrial demand for components that can
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be most efficiently produced by turning, such
as shafts, bushings, and precision cylindrical
parts, has solidified its role as a primary metal
cutting process in various sectors, including
automotive, aerospace, and energy [2].

In a typical turning operation, the
workpiece is held and rotated by the spindle
while a single point cutting tool removes
material by traversing parallel (Z axis) or
perpendicular (X axis) to the axis of rotation
[3]. Critical process parameters, such as
cutting speed, feed rate, and depth of cut,
directly influence machining efficiency,
surface finish, tool wear, and overall
productivity. These parameters must be
carefully selected and optimized according to
material properties, cutting tool
characteristics, and required tolerances to
achieve an effective balance between
productivity and quality [4], [5]. Improper
selection of these parameters can lead to
excessive tool wear, poor surface integrity,
and reduced material removal rate, ultimately
increasing production costs.

Beyond its traditional role, turning has
undergone continuous technological
advancements, integrating high performance
cutting tools, computer aided design and
manufacturing (CAD/CAM) systems, and real
time process monitoring. The introduction of
coated carbide, cermet, and ceramic tools has
extended cutting tool life while enabling
higher cutting speeds and feeds, thereby
improving overall process efficiency [6].
Additionally, the integration of advanced CNC
control  systems has enabled the
implementation  of  adaptive  control
strategies, allowing for real time adjustment
of cutting parameters in response to tool wear
or varying workpiece conditions.

Artificial Intelligence (Al) refers to the
ability of computer systems to perform tasks
that typically require human cognitive
functions, such as perception, reasoning,
learning, and problem solving. It encompasses
a wide range of subfields, including natural
language processing, computer vision, and
robotics, each aimed at enabling machines to
make informed decisions and adapt to
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changing conditions. Machine Learning (ML),
a subset of Al, focuses specifically on
algorithms that learn patterns from data to
improve their performance over time without
explicit reprogramming [7]. These algorithms
range from simple linear regression models to
complex deep learning architectures capable
of processing high dimensional datasets.

In the context of manufacturing, both Al
and ML rely heavily on data collected from a
wide variety of sources. Typical industrial data
streams originate from sensors monitoring
temperature, vibration, acoustic emission,
cutting forces, and other process variables, as
well as from control systems, computer aided
manufacturing  (CAM) platforms, and
enterprise resource planning (ERP)
databases[8]. The quality and structure of this
data directly influences model accuracy,
making preprocessing steps, such as noise
reduction, normalization, and feature
extraction, essential [9]. Properly processed
data enables predictive analytics for tasks like
process  optimization, tool condition
monitoring, and quality assurance,
transforming raw  measurements into
actionable intelligence  that supports
autonomous and adaptive manufacturing
systems.

The evolution of turning from a
conventional metal cutting operation to an
intelligent, data driven process reflects the
broader transformation  occurring in
manufacturing under the influence of Industry
4.0 technologies. While fundamental
knowledge of process kinematics, material
behavior, and parameter optimization
remains critical, the integration of Al and ML
offers opportunities for enhancing precision,
productivity, and adaptability. By leveraging
multi source sensor data, advanced
algorithms can accurately predict process
outcomes, detect anomalies, and adapt
control strategies in real time, thereby
minimizing waste and maximizing efficiency
[10]. This convergence of traditional
machining expertise with computational
intelligence establishes a foundation for
developing robust, autonomous turning
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systems capable of meeting the growing
demands for high quality, cost effective, and
sustainable manufacturing. Against this
backdrop, the present work aims to explore
and advance Al and ML based approaches for
turning process optimization.

2. APPLICATION OF Al AND ML IN TURNING
MACHINING

2.1 Tool wear prediction

Tool wear prediction remains a central
challenge in modern turning, directly affecting
dimensional accuracy, surface integrity, tool
life, and costs. In practical manufacturing
environments, researchers are increasingly
combining Al techniques with multi sensor
monitoring systems to capture and anticipate
wear progression as it unfolds on the shop
floor. Such approaches often employ
vibration, acoustic emission, spindle power,
and cutting force signals, which are processed
through advanced signal analysis methods
and fed into machine learning models for
accurate wear estimation [11]. By correlating
sensor features with the actual wear state,
researchers have demonstrated that Al driven
methods can significantly  outperform
conventional threshold-based monitoring
strategies in both prediction accuracy and
adaptability to changing cutting conditions.

In addition to data driven models, hybrid
approaches have been developed, combining
physics-based wear models with Al algorithms
to leverage the strengths of both domains
[12]. These methods benefit from the
interpretability of mechanistic models while
gaining the flexibility of ML to adapt to
complex and nonlinear wear patterns. Studies
have shown that the fusion of physical insights
with advanced regression or classification
models enables a more robust prediction
framework, particularly under variable
machining parameters. Furthermore, the
adoption of deep learning architectures, such
as convolutional neural networks and
recurrent neural networks, has enabled
automatic feature extraction from raw signal
data, reducing the reliance on manual feature
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engineering and improving generalization to
unseen machining scenarios [13].

Another emerging direction is the
utilization of cloud based and digital twin
systems for tool wear prediction. By
integrating sensor data into a virtual replica of
the machining process, digital twins can
continuously update the tool wear model
based on real time inputs, thereby allowing
adaptive process control [14]. This integration
not only supports predictive maintenance but
also enables optimization of cutting
parameters to prolong tool life.

Some implementations have used
streamlined neural architectures, such as
pruned convolutional networks or compact
gradient boosted ensembles, embedded
directly into CNC controllers. These designs
process sensor data locally, delivering wear
state updates within milliseconds, and avoid
the bandwidth load of constant cloud
communication [15].

2.2 Cutting force

Cutting force prediction plays a decisive
role in maintaining process stability and
achieving consistent productivity. A growing
body of work now explores hybrid Al models
that merge physical process knowledge with
adaptive learning strategies, enabling force
estimation to remain accurate even under
fluctuating machining conditions. One
notable approach integrates mechanistic
force models derived from cutting mechanics
with data driven adjustment layers, producing
hybrid systems that substantially improve
prediction accuracy across variable machining
regimes. This synergy supports robust
predictions even when tool geometry,
material properties, or machining conditions
deviate from nominal parameters, providing
flexibility without sacrificing interpretability
[16].

Beyond hybrid frameworks, purely data
driven  methods have demonstrated
exceptional adaptability and precision,
particularly through deep learning. Multi-
layer neural networks, including convolutional
and recurrent architectures, have become
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especially adept at modeling the nonlinear,
time dependent behavior of cutting forces.
These models leverage large sensor datasets,
captured from vibration, spindle load,
acoustic emissions, or torque signals, to learn
complex patterns that standard regression
models struggle to detect. Their increasing
accuracy and real time applicability mark
them as critical tools for modern, intelligent
machining systems [17].

Some studies have explored pairing live
force measurements with virtual machining
environments that update in real time. This
approach allows the simulation to mirror the
evolving cutting process, enabling immediate
adjustments to feed rate or spindle speed
when force spikes are predicted. This setup
enables predictive control strategies such as
adaptive feed rate optimization and proactive
tool path adjustment, helping to minimize
undesired force spikes and mitigate chatter.
Cloud integration also offers scalable
computational support and facilitates cross
machine learning adaptations, ultimately
helping to standardize performance across
diverse setups [18].

At the same time, there’s growing interest
in low latency, on edge inference solutions.
Lightweight Al models, such as pruned neural
networks or compact ensemble learners, are
being optimized for real time deployment
directly on CNC controllers. These solutions
address the imperative for fast, reliable
cutting force feedback without overloading
communication channels or cloud
infrastructure, paving the way for closed loop
control even in resource constrained
environments [19].

2.3 Surface quality prediction

Surface quality, commonly expressed
through roughness parameters, remains a
defining factor in part performance,
influencing  everything from assembly
precision to service life. Increasingly, Al driven
predictive models are being used to process
real time sensor data, enabling proactive
adjustments that keep surface finish within
tight specification limits. By extracting
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features from spindle power, acoustic
emissions, and vibration signals, these models
can forecast surface roughness with
noteworthy accuracy, enabling immediate on
the fly adjustments to maintain desired finish
standards [20].

Hybrid modeling approaches, integrating
mechanistic surface generation models with
machine learning corrections, have proven
particularly robust. Mechanistic models
capture the foundational physics of tool—
workpiece interaction, while the data driven
layer compensates for complex, real world
non idealities such as tool vibration, material
heterogeneity, and tool wear. This dual layer
strategy enhances reliability across varied
cutting conditions without sacrificing model
interpretability [21].

Researchers have tested edge optimized
predictors, including MobileNet style
convolutional models and reduced tree
ensembles, which can run on embedded
controllers. This setup enables the control
system to adjust spindle speed or feed rate
almost instantly when the forecasted surface
finish begins to drift. This enables real time
roughness prediction and closed loop
adjustment of feed rates or spindle speeds, all
with minimal latency and without reliance on
cloud back ends [22].

Certain research groups are experimenting
with virtual process replicas that continuously
incorporate live surface finish measurements.
These replicas can forecast how surface
quality will evolve if current parameters are
maintained, helping engineers intervene
before defects occur. By pairing live sensor
streams with virtual replicas of the machining
process, predictive roughness models can
self-update continuously, adapting to tool
wear progression, changes in material
behavior, or shifts in ambient conditions. This
enables not only predictive quality control but
also long-term process optimization across
tool life and across multiple machines [23].

Finally, a practical direction gaining
traction is the use of transfer learning or few
shot adaptations for surface quality models.
Pretrained models, developed on datasets
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from one material or machine, can be swiftly
adapted to new setups using minimal new
data, significantly reducing the cost of model
deployment in varied production
environments [24].

2.4 Energy consumption prediction

In the drive toward sustainable
manufacturing, predicting and optimizing
energy consumption in CNC turning has
gained strategic importance. Recent studies
show that targeting specific cutting energy
through parameter optimization can yield
significant efficiency gains without sacrificing
throughput or part quality. These approaches
often involve fine tuning of machining
parameters, such as cutting speed, feed rate,
and depth of cut, using advanced optimization
algorithms to minimize energy use without
compromising productivity or quality [25].

Artificial intelligence techniques,
particularly artificial neural networks (ANNs),
have emerged as powerful tools for modeling
and predicting energy consumption under
varying cutting conditions. By leveraging multi
sensor inputs and historical machining data,
these models can capture the nonlinear
relationships between process parameters
and energy demand, enabling real time
adjustments for optimal efficiency. Hybrid
frameworks that combine ANN prediction
with control and monitoring systems allow for
dynamic recalibration of parameters during
turning operations [26].

Sustainability focused studies further
extend prediction models by incorporating
specific cutting energy into multi objective
optimization. This approach simultaneously
targets energy efficiency, tool wear reduction,
and overall process sustainability, particularly
when using advanced techniques like
minimum quantity lubrication (MQL). By
integrating such lubrication strategies into
predictive models, researchers have achieved
significant reductions in energy usage
alongside improvements in surface quality
and tool life [27].

The inclusion of environmentally friendly
lubricants, such as vegetable based MQL
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fluids, adds an ecological dimension to energy
consumption optimization. In such cases, ANN
based multi objective optimization
frameworks can balance surface roughness,
energy consumption, carbon emissions, and
machining cost, providing a comprehensive
decision-making tool for sustainable CNC
turning [28].

Finally, recent advancements also highlight
the role of material specific and process
specific studies in energy consumption
modeling. Tailored models that account for
unique properties of workpiece materials,
cutting tools, and machining setups can
further enhance prediction accuracy, enabling
a transition toward fully adaptive, sustainable,
and energy aware manufacturing systems
[29].

2.5 Productivity

Maximizing  productivity in  turning,
whether measured as MRR, parts per hour, or
effective throughput, remains a priority for
competitive manufacturing. New Al driven
modeling approaches are proving valuable in
mapping the complex relationships between
cutting parameters and real-world output,
allowing for informed, high impact
adjustments. By utilizing operational data
streams, such as spindle power, feed rate, and
machining cycles, these models can predict
productivity with high fidelity, enabling
proactive adjustments to maximize output
without compromising quality [30].

Hybrid modeling approaches that combine
mechanistic productivity estimators with data
driven optimization layers show considerable
promise. The mechanistic models provide
baseline output estimates grounded in tool
workpiece geometry and cutting mechanics,
while machine learning corrections account
for real world inefficiencies, like operator
intervention, tool wear, or thermal deflection.
This fosters a resilient productivity forecast
that adapts to dynamic shop floor conditions
[31].

Advanced optimization frameworks
further elevate productivity prediction by
integrating multi objective considerations. For
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example, productivity models are now
designed to simultaneously balance output
rate, energy consumption, and surface
quality. These systems typically employ
evolutionary  algorithms, ANN  based
controllers, or reinforcement learning agents
to discover optimal operating points that
satisfy multiple production goals concurrently
offering a comprehensive toolkit for
sustainable, high efficiency machining [32].

Moreover, the rise of digital twin platforms
and real time simulation has enhanced
productivity modeling capabilities. By
continuously integrating live sensor data into
virtual replicas of the machining process,
these systems can simulate “what if”
scenarios in real time testing parameter shifts
or tooling changes before committing them to
actual production. This enables adaptive
control strategies that autonomously enhance
throughput while maintaining part quality and
tool life [33].,

3. FUTURE DIRECTIONS

The evolution of Al and ML in turning will
increasingly center on multi modal sensor fusion,
combining acoustic, vibration, force,
temperature, and vision data into unified process
models. This integration will strengthen multi
objective  optimization, balancing quality,
throughput, energy consumption, and tool life in
real time. Online adaptive learning will replace
static deployments, enabling continuous
recalibration as tools wear, materials vary, and
environmental conditions change. Transfer
learning will reduce the cost and time of
implementation across diverse machines and
materials. On the sustainability front, integrating
life cycle assessment (LCA) into optimization
frameworks will make environmental impact a
standard decision-making parameter. The
convergence of digital twins with hybrid edge—
cloud architectures will support distributed,
predictive, and self-optimizing manufacturing
networks, aligning with Industry 4.0 and paving
the way toward Industry 5.0.
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4. CONCLUSION

This review demonstrates that Al and ML
based approaches, particularly hybrid models, are
redefining predictive modeling in turning.
Advances in tool wear, cutting force, and surface
quality prediction are enabling real time control,
while machining time models are closing the gap
between CAM estimates and shop floor realities.
Energy consumption modeling now integrates
sustainability goals, and productivity optimization
is evolving into a multi objective discipline.
Collectively, these developments signal a
transition toward intelligent, connected, and
environmentally responsible machining systems,
where adaptive algorithms, real time feedback,
and digital twins converge to deliver high
performance, resilient manufacturing in dynamic
industrial environments.
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