40th International Conference on Production Engineering of Serbia
ICPES 2025
Nis, Serbia, 18-19th september 2025
RECENT ADVANCES IN ARTIFICEL INTELIGENCE AND MACHINE LEARNING FOR PROCESS, OPTIMIZATION IN TURNING
Aleksandar Trajkovic, Miloš Madic
DOI: 10.46793/ICPES25.259T
The integration of artificial intelligence (AI) and machine learning (ML) into turning is transforming traditional manufacturing into a highly adaptive, data driven process. This review examines five key application areas, tool wear prediction, cutting force estimation, surface quality, energy consumption modeling and productivity optimization, highlighting the shift from static, empirical approaches to dynamic, hybrid frameworks that blend physics-based models with data driven algorithms. Advances in sensing technologies, digital twin platforms, and edge cloud integration now enable real time monitoring and multi objective optimization, enhancing both efficiency and sustainability. The analysis identifies multi modal data fusion, online adaptive learning, cross domain model transfer, and life cycle integrated decision making as emerging trends poised to drive the next generation of intelligent, sustainable, and self-optimizing turning systems
Turning, Artificial Intelligence, Machine Learning, Hybrid modeling, Predictive manufacturing
[1] N. Jouini, J. A. Ghani, S. Yaqoob, and A. Z. Juri, Optimized Machining Parameters for High Speed Turning Process: A Comparative Study of Dry and Cryo+MQL Techniques, Processes, Vol. 13, No. 3, 2025, doi: 10.3390/pr13030739.
[2] W. Li, Advanced Manufacturing and Precision Machining, Applied Sciences, Vol. 14, No. 24, 2024, doi: 10.3390/app142411642.
[3] Z. Haitao, G. Jingfeng, T. Yongbo, Z. Shuixiang, and Y. Xiaoxi, An analysis of compensation for radial thermal errors of a turning center with a three axis feed system, Sci Rep, Vol. 15, No. 1, p. 23345, 2025, doi: 10.1038/s41598 025 05804 5.
[4] M. S. Surya, Optimization of machining parameters while turning AISI316 stainless steel using response surface methodology, Sci Rep, Vol. 14, No. 1, p. 30083, 2024, doi: 10.1038/s41598 024 78657 z.
[5] J. V Abellán Nebot, C. Vila Pastor, and H. R. Siller, A Review of the Factors Influencing Surface Roughness in Machining and Their Impact on Sustainability, Sustainability, Vol. 16, No. 5, 2024, doi: 10.3390/su16051917.
[6] V. F. C. Sousa and F. J. G. Silva, Recent Advances in Turning Processes Using Coated Tools—A Comprehensive Review, Metals (Basel), Vol. 10, No. 2, 2020, doi: 10.3390/met10020170.
[7] R. X. Gao, J. Krüger, M. Merklein, H. C. Möhring, and J. Váncza, Artificial Intelligence in manufacturing: State of the art, perspectives, and future directions, CIRP Annals, Vol. 73, No. 2, pp. 723–749, 2024.
[8] S. J. Plathottam, A. Rzonca, R. Lakhnori, and C. O. Iloeje, A review of artificial intelligence applications in manufacturing operations, J Adv Manuf Process, Vol. 5, No. 3, p. e10159, 2023, doi: https://doi.org/10.1002/amp2.10159.
[9] A. Presciuttini, A. Cantini, F. Costa, and A. Portioli Staudacher, Machine learning applications on IoT data in manufacturing operations and their interpretability implications: A systematic literature review, J Manuf Syst, Vol. 74, pp. 477–486, 2024, doi: https://doi.org/10.1016/j.jmsy.2024.04.012.
[10] M. S. Ahmmed, S. P. Isanaka, and F. Liou, Promoting Synergies to Improve Manufacturing Efficiency in Industrial Material Processing: A Systematic Review of Industry 4.0 and AI, Machines, Vol. 12, No. 10, 2024, doi: 10.3390/machines12100681.
[11] Z. Che, C. Peng, J. Wang, R. Zhang, C. Wang, and X. Sun, KAN Based Tool Wear Modeling with Adaptive Complexity and Symbolic Interpretability in CNC Turning Processes, Applied Sciences, Vol. 15, No. 14, 2025, doi: 10.3390/app15148035.
[12] T. Namboodri and C. Felho, AI FOR QUALITY OPTIMIZATION IN TURNING: A SHORT REVIEW., MM Science Journal, 2025.
[13] L. Colantonio, L. Equeter, P. Dehombreux, and F. Ducobu, Explainable AI for tool condition monitoring using Explainable Boosting Machine, Procedia CIRP, Vol. 133, pp. 138–143, 2025, doi: https://doi.org/10.1016/j.procir.2025.02.025.
[14] S. C. S and A. Ramesh, Digital twin enabled surface quality prediction and optimization in dry turning of Ti6Al4V using ANFIS and genetic algorithm, Journal of King Saud University – Engineering Sciences, Vol. 37, No. 5, p. 17, 2025, doi: 10.1007/s44444 025 00030 w.
[15] M. Kodric, J. Korbar, M. Pogacar, and G. Cepon, Development of a resource efficient real time vibration based tool condition monitoring system using PVDF accelerometers, Measurement, Vol. 251, p. 117183, 2025, doi: https://doi.org/10.1016/j.measurement.2025.117183.
[16] A. Suárez, F. Veiga, X. Sandua, P. J. Rivero, L. N. L. de Lacalle, and A. Wretland, Machinability of Waspaloy: an investigation of cutting forces and tool wear in turning, The International Journal of Advanced Manufacturing Technology, Vol. 139, No. 5, pp. 3159–3172, 2025, doi: 10.1007/s00170 025 15983 0.
[17] M. Liu, H. Xie, W. Pan, S. Ding, and G. Li, Prediction of cutting force via machine learning: state of the art, challenges and potentials, J Intell Manuf, Vol. 36, No. 2, pp. 703–764, 2025, doi: 10.1007/s10845 023 02260 8.
[18] M. Mirzabagherian, S. Amini, and M. Bayat, Investigation of the effects of ultrasonic assisted face turning with CO2 cooling on cutting forces, residual stress, and surface quality, International Journal of Lightweight Materials and Manufacture, Vol. 8, No. 5, pp. 551–561, 2025, doi: https://doi.org/10.1016/j.ijlmm.2025.04.003.
[19] J. Stanojkovic, M. Madic, M. Trifunovic, P. Jankovic, and D. Petkovic, A NOVEL APPROACH TO PREDICTING THE CUTTING FORCE IN TURNING USING DIMENSIONAL ANALYSIS, Facta Universitatis, Series: Mechanical Engineering, 2025.
[20] A. T. Abbas, N. Sharma, K. F. Alqosaibi, M. A. Abbas, R. C. Sharma, and A. Elkaseer, Investigation of Surface Quality and Productivity in Precision Hard Turning of AISI 4340 Steel Using Integrated Approach of ML MOORA PSO, Processes, Vol. 13, No. 4, 2025, doi: 10.3390/pr13041156.
[21] T. Namboodri and C. Felho, AI FOR QUALITY OPTIMIZATION IN TURNING: A SHORT REVIEW., MM Science Journal, 2025.
[22] T. Namboodri and C. Felho, AI FOR QUALITY OPTIMIZATION IN TURNING: A SHORT REVIEW., MM Science Journal, 2025.
[23] J. H. Ko and C. Yin, A review of artificial intelligence application for machining surface quality prediction: from key factors to model development, J Intell Manuf, 2025, doi: 10.1007/s10845 025 02571 y.
[24] Y. Zhu, T. Österlind, A. Rashid, and A. Archenti, Data driven approaches for surface quality monitoring and prediction based on heterogeneous multi channel signal fusion in hard part machining, Eng Appl Artif Intell, Vol. 160, p. 111865, 2025, doi: https://doi.org/10.1016/j.engappai.2025.111865.
[25] K. Noor, M. A. Siddiqui, and A. I. Syed, Optimization of specific energy consumption in CNC turning of a hardened alloy steel roll at low cutting speeds, Journal of Engineering, Design and Technology, Vol. 23, No. 2, pp. 368–385, 2025.
[26] B. F. Abaza and V. Gheorghita, Artificial Neural Network Framework for Hybrid Control and Monitoring in Turning Operations, Applied Sciences, Vol. 15, No. 7, 2025, doi: 10.3390/app15073499.
[27] R. S. Revuru, K. T. Sanjay, B. Srinu, and P. V. Krishna, Evaluation of optimum process parameters based on specific cutting energy in turning for sustainability, The International Journal of Advanced Manufacturing Technology, Vol. 136, No. 10, pp. 4569–4579, 2025, doi: 10.1007/s00170 025 15068 y.
[28] T. Hakmi, H. Abderazek, Y. F. Yapan, A. Hamdi, and A. Uysal, Enhancing sustainability in CNC turning of POM C polymer using MQL with vegetable based lubricant: machine learning and metaheuristic optimization approaches, The International Journal of Advanced Manufacturing Technology, Vol. 139, No. 3, pp. 1661–1684, 2025, doi: 10.1007/s00170 025 15962 5.
[29] M. A. Khan, R. Ahmad, S. H. I. Jaffery, S. I. Butt, M. S. Khan, and D. Zahid, Sustainability analysis of tool wear, energy efficiency, surface quality, and energy during dry, MQL, and wet turning of Inconel 718, International Journal of Sustainable Energy, Vol. 44, No. 1, p. 2515447, Dec. 2025, doi: 10.1080/14786451.2025.2515447.
[30] A. T. Abbas, N. Sharma, K. F. Alqosaibi, M. A. Abbas, R. C. Sharma, and A. Elkaseer, Investigation of Surface Quality and Productivity in Precision Hard Turning of AISI 4340 Steel Using Integrated Approach of ML MOORA PSO, Processes, Vol. 13, No. 4, 2025, doi: 10.3390/pr13041156.
[31] A. Ginting, R. A. Sidabutar, F. D. Pranata, K. Syam, S. Situmorang, and T. Fikriawan, Productivity improvement in hard turning of AISI 4340 with response surface methodology and machine learning, International Journal of Machining and Machinability of Materials, Vol. 27, No. 1, pp. 85–103, Jan. 2025, doi: 10.1504/IJMMM.2025.145073.
[32] M. M. Nasr and S. Anwar, Developing an intelligent approach based on ANFIS and advanced NSGA III for improving the turning performance of additively manufactured ? TiAl alloy, The International Journal of Advanced Manufacturing Technology, Vol. 137, No. 7, pp. 3333–3358, 2025, doi: 10.1007/s00170 025 15366 5.
[33] K. Ramesha et al., ANN and machine learning based predictions of MRR in AWSJ machining of CFRP composites, Sci Rep, Vol. 15, No. 1, p. 14218, 2025.