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Abstract: The increasing frequency and sophistication of cyber-attacks on manufacturing systems demand 
that scheduling frameworks evolve to include cybersecurity considerations. The integration of dynamic and 
cybersecurity-related factors into the flexible job shop scheduling problem modelling is essential to better 
reflect real-world manufacturing conditions. This paper addresses the flexible job shop scheduling problem in 
a dynamic manufacturing environment, affected by three unexpected disturbances: the arrival of new jobs 
into the manufacturing system, job cancellations, and machine tool breakdowns. Particularly, some of these 
disturbances are caused by cyber-attacks targeting manufacturing systems, increasing risks to production 
and operational reliability. These disturbances have a significant impact on manufacturing efficiency, 
affecting delivery deadlines, resource utilization, and overall processing time. In this research paper, a genetic 
algorithm is applied as a robust artificial intelligence technique suitable for solving NP-hard combinatorial 
problems such as the dynamic flexible job shop scheduling problem. The algorithm facilitates real-time 
adjustment through rescheduling mechanisms, aiming to achieve a specified optimization objective – 
minimizing the total processing time (makespan). The proposed method is implemented in the MATLAB® 
environment and validated through simulations using relevant benchmark problems. Experimental results 
demonstrate that the proposed methodology significantly improves adaptability and performance in dynamic 
manufacturing environments, while maintaining high efficiency despite sudden interruptions. Overall, the 
proposed approach advances intelligent and adaptive real-time rescheduling in a flexible job shop 
environment, supporting the Industry 4.0 concept by enhancing the flexibility, efficiency, and performance of 
intelligent manufacturing systems that can withstand both disturbances and emerging cyber threats. 

 
Keywords: dynamic flexible job shop scheduling, genetic algorithm, rescheduling, manufacturing systems, 
optimization, disturbances, cyber-attack. 

 
1. INTRODUCTION  

 
In the era of Industry 4.0, manufacturing 

systems are transforming into intelligent, self-
organizing, and data-driven environments that 
integrate both physical operations and 

decision-making processes. Within this context, 
the scheduling of operations plays a critical role 
in enabling flexibility, efficiency, and 
responsiveness to dynamic and unpredictable 
conditions [1]. While these developments 
improve efficiency and flexibility, they also 
expose manufacturing environments to a wide 
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range of disturbances, including those caused 
by cyber-attacks [2]. These disturbances can 
result in severe consequences, posing 
significant challenges to traditional scheduling 
approaches.  

The Flexible Job Shop Scheduling Problem 
(FJSSP) is a well-known NP-hard combinatorial 
optimization problem that extends the classical 
Job Shop Scheduling Problem (JSSP) by allowing 
operations to be performed on one of several 
alternative machine tools. This flexibility 
provides a more realistic representation of 
manufacturing environments, but it also 
significantly increases computational 
complexity. When such scheduling problems 
occur in dynamic environments, where the 
system is affected by unplanned events, it 
becomes the Dynamic Flexible Job Shop 
Scheduling Problem (DFJSSP) [3]. Unlike static 
models, the DFJSSP better reflects real-world 
manufacturing conditions by incorporating the 
need for rescheduling in response to 
unexpected changes.   

This research paper addresses the DFJSSP in 
the presence of three types of disturbances: (i) 
the arrival of new jobs [4], (ii) the cancellation 
of existing jobs [5], and (iii) machine 
breakdowns [6]. Notably, some of these 
disturbances represent a direct consequence of 
cyber-attacks targeting manufacturing systems. 

To respond effectively to these challenges, a 
scheduling approach based on Genetic 
Algorithms (GA) is proposed [7]. The GA-based 
approach enables real-time adaptation through 
dynamic rescheduling, taking into account the 
current state of the manufacturing system. The 
algorithm is designed to minimize total 
processing time (makespan) [8].  

Previous studies have demonstrated the 
effectiveness of GA in addressing key 
disturbances in manufacturing systems. For 
instance, [7] developed a modular GA-based 
framework for dynamic adaptation that 
supports both regeneration and modification of 
populations following disruptions, such as 
machine tool breakdowns and job 
cancellations, thereby facilitating the effective 
continuation of the search process. Similarly, 
the authors of [9] applied GA to dynamic job-

shop scheduling with continuous arrival of new 
jobs, optimizing multiple objective functions 
and outperforming priority rule-based 
approaches under both deterministic and 
stochastic conditions. The research in [10] 
extended GA applications to real-time 
rescheduling by considering critical 
disturbances, such as machine failures, new job 
arrivals, and job cancellations, thereby enabling 
the rapid generation of new optimal schedules 
without reevaluating completed operations. In 
addition, [11] introduced a novel GA designed 
to handle machine tool breakdowns, achieving 
significant reductions in makespan compared 
to conventional methods by efficiently 
managing interruptions without deferring 
operations. Furthermore, [12] proposed an 
improved GA combined with a rolling 
scheduling strategy and specialized mutation 
operators, demonstrating enhanced local 
search capabilities and objective function 
performance when handling new job arrivals 
and machine downtimes in dynamic 
environments. These contributions highlight 
the suitability and flexibility of GA-based 
methods for robust and adaptive scheduling in 
complex manufacturing environments 
characterized by high levels of uncertainty and 
disturbance occurrence.  

The developed methodology is 
implemented in the MATLAB® environment, 
which supports the representation of 
alternative process plans, the management of 
dynamic constraints, and the visualization 
through Gantt charts.  

This paper is organized as follows: Section 2 
formulates the DFJSSP and defines the 
associated constraints and objectives. Section 3 
presents the proposed GA-based solution 
methodology. Section 4 provides the 
experimental evaluation and simulation results 
discussion. Section 5 concludes the research 
paper outline. Section 6 provides essential 
directions and insightful suggestions for future 
research. 
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2. DFJSSP FORMULATION 
 

The flexibility of manufacturing processes is 
a fundamental requirement for efficient and 
adaptive manufacturing systems, 
encompassing various dimensions such as 
machine tool flexibility, tool flexibility, tool 
orientation flexibility, and process flexibility. 
This research paper focuses on three key types 
of flexibility: (i) machine tool flexibility, where a 
single operation can be performed on multiple 
alternative machine tools; (ii) process plan 
flexibility, which refers to the possibility of 
processing a job in different ways; and (iii) 
operation sequence flexibility, which 
represents the ability to change the order of 
operations during the optimization of 
manufacturing processes. 

According to the mathematical model 
developed in [13], three alternative 
manufacturing process plans are generated for 
each job, based on the criterion of minimizing 
total production time, taking into account both 
the processing time of operations and the 
transportation time between alternative 
machine tools. The resulting process plans 
represent one of the key input parameters for 
the scheduling process, where the final 
assignment and sequencing of operations are 
subject to further optimization.  

To determine the optimal scheduling plan, 
this study considers makespan as the objective 
function. The mathematical formulation of 
minimizing makespan is defined as: 

𝑜𝑏𝑗 = max(𝑐𝑖𝑗) , (𝑐𝑖𝑗 ∈ 𝑇𝑑(𝑠𝑖𝑗 , 𝑐𝑖𝑗)), (1) 

where: 𝑐𝑖𝑗 – the completion time of operation 

𝑂𝑖𝑗; 𝑠𝑖𝑗 – the start time of operation 𝑂𝑖𝑗; 𝑇𝑑 – 

the set of start times and completion times of 
all operations of all jobs. 

Examples of selected alternative 
manufacturing process networks for processing 
four jobs are presented in Figure 1, while Figure 
2 illustrates a job-shop scheduling problem. 

A set of operations is determined for each 
job, along with a specified sequence of these 
operations on machine tools. The processing 
time for each operation on the corresponding 
machines is also specified. For instance, to 

process jobs 1 and 2, three operations are 
required for each; job 3 requires four 
operations, while job 4 requires two operations. 
Based on the information provided by the 
alternative manufacturing process networks, an 
initial scheduling plan is generated before any 
potential disturbance. Subsequently, an 
optimal rescheduling plan is developed 
following each of the three mentioned 
disturbances (Figures 3, 4, and 5). 

 

 
 

 

Figure 1. Alternative manufacturing  
process plans 

 

 

Figure 2. Gantt chart of job shop schedule 
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The arrival of a new job implies the need to 
modify the order of existing operations after 
the arrival time, while also considering 
operations required for processing the new job 
(Figure 3). The updated scheduling plan, also 
referred to as the rescheduling plan, can be 
utilized to enhance the overall performance of 
the manufacturing system in processing new 
jobs while simultaneously meeting the 
deadlines for all jobs within the system.  

 

Figure 3. Rescheduling due to the arrival of              
a new job 4 in the system 

Job cancellation represents a disturbance 
that requires the termination of processing for 
a specific job. Therefore, after the cancellation, 
rescheduling is performed for the remaining 
jobs, excluding all remaining scheduled 
operations of the canceled job (Figure 4).  

 

Figure 4. Rescheduling due to the           
cancellation of job 1 

A machine tool breakdown results in the 
rescheduling of all ongoing operations that 
were not completed at the moment of failure 
and were assigned to the failed machine tool. 
Modeling approaches for handling such 
disturbances typically assume that all 
incomplete operations are reassigned to 
alternative machine tools suitable for 
continuing the processing of the corresponding 
job (Figure 5).  

 

Figure 5. Rescheduling due to the             
breakdown of machine tool M3 

The following assumptions are taken into 
account during the rescheduling processes 
illustrated in Figures 3, 4, and 5:  
• The time required for rescheduling is 

considered to have no substantial impact, 
and processing of all jobs on all machine 
tools resumes immediately after the 
rescheduling is completed.  

• If an operation was in progress at the 
moment a disturbance occurred, it 
continues on the same machine tool; in the 
case of a machine breakdown, the operation 
is reassigned to an alternative machine tool 
on which it can be processed. 

• At any given moment, each machine tool can 
process only one operation of a single job. 

• Jobs are available for processing starting 
from time 𝑡0 = 0 in the initial scheduling 
plan, and from time 𝑡 = 𝑟𝑖 after a 
disturbance occurs, where 𝑟𝑖  represents the 
release time – the earliest moment when the 
next operation of job 𝑖 can initiate.  

• Different operations of the same job cannot 
be processed simultaneously. 

• Once an operation on a machine tool is 
completed, the job is immediately 
transferred to the machine where the next 
operation is scheduled, considering also the 
transportation time between machines. 

• The setup time of the machine tool, as well 
as other production resources for the 
subsequent operation is not taken into 
account in DFJSSP.  

• The duration of the machine tool breakdown 
is unknown. Therefore, all operations that 
were scheduled to be processed on the 
failed machine tool must be reassigned to 
alternative machines during rescheduling. 
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2.1 The mathematical model of the DFJSSP 
 

The mathematical model of the dynamic 
flexible job shop scheduling problem, 
presented below, is based on the research 
outlined in studies [14, 15]. 

List of symbols: 
𝑁 – number of jobs 𝑖 = 1,… ,𝑁;  
𝑀 – number of machine tools, 𝑚 = 1,… ,𝑀; 
𝑂𝑖𝑗𝑘
𝑚  – the 𝑘-th operation of the 𝑗-th alternative 

manufacturing process of job 𝑖 executed on 
machine tool 𝑚; 
𝑟𝑖 – release time for job 𝑖 is the earliest time 
when the next operation of job 𝑖 can start after 
the disturbance occurs; 
𝑟𝑚 – release time for machine 𝑚 is the earliest 
time when the next operation can start on 
machine tool 𝑚 after the disturbance occurs; 
𝑡𝑛𝑒𝑤 – new job arrival time; 
𝑡𝑐𝑎𝑛 –  job cancellation time; 
𝑡𝑚𝑏 – machine tool breakdown time; 
𝑡𝑑  – time of disturbance occurrence (in 
general); 
𝑠𝑖𝑗𝑘
𝑚  – start time of the operation 𝑂𝑖𝑗𝑘

𝑚 ; 

𝑐𝑖𝑗𝑘
𝑚  – completion time of the operation 𝑂𝑖𝑗𝑘

𝑚 ; 

𝑧𝑖𝑗𝑘
𝑚  – a binary variable that takes the value 1 if 

the machine tool assigned to perform 𝑂𝑖𝑗𝑘
𝑚  

remains unchanged, and 0 otherwise. 
 

2.2 New job arrival and job cancellation 
 
From the moment the disturbance occurs, it 

is necessary to reschedule the interrupted 
operations. Operations that were completed 
prior to the occurrence of the disturbance, as 
well as those that were performed at that 
moment, are excluded from the rescheduling 
process. In the case of the arrival of a new job 
(Figure 3), the completed operations O11, O21 

and O31 (𝑐𝑖𝑗𝑘
𝑚 ≤ 𝑡𝑛𝑒𝑤), as well as the operations 

in progress at the time O12 and O32 (𝑠𝑖𝑗𝑘
𝑚 <

𝑡𝑛𝑒𝑤 < 𝑐𝑖𝑗𝑘
𝑚 ), are excluded from the 

rescheduling process. In the case of job 
cancellation (Figure 4), the following 
operations are not considered during 
rescheduling: O11, O12, O21, O22, O31, and O32 
(𝑐𝑖𝑗𝑘
𝑚 ≤ 𝑡𝑐𝑎𝑛), as well as operation O33 (𝑠𝑖𝑗𝑘

𝑚 <

𝑡𝑐𝑎𝑛 < 𝑐𝑖𝑗𝑘
𝑚 ), which was performing at the time 

of cancellation. The remaining operations are 
included in the rescheduling (𝑠𝑖𝑗𝑘

𝑚 > 𝑡𝑑, where 

𝑡𝑑 = 𝑡𝑛𝑒𝑤 in the case of a new job arrival, and 
𝑡𝑑 = 𝑡𝑐𝑎𝑛 in the case of job cancellation). 

The release time 𝑟𝑖is calculated based on the 
general equation (2): 

𝑟𝑖 = 𝑐𝑖𝑗𝑘
𝑚 × 𝑧𝑖𝑗𝑘

𝑚 + 𝑡𝑑 × (1 − 𝑧𝑖𝑗𝑘
𝑚 ). (2) 

In the case where an operation of a job was 
in progress at the time 𝑡𝑑, and the machine tool 
on which the operation was being performed 
remains unchanged (i.e., 𝑧𝑖𝑗𝑘

𝑚 = 1), the 

equation (2) takes the following form, given by 
the equation (3): 

𝑟𝑖 = 𝑐𝑖𝑗𝑘
𝑚 = 

= {𝑠𝑖𝑗𝑘
𝑚 + 𝑡𝑖𝑗𝑘

𝑚 ⃒𝑠𝑖𝑗𝑘
𝑚 < 𝑡𝑑 < 𝑐𝑖𝑗𝑘

𝑚 }. 
(3) 

On the other hand, if the operation was 
completed prior to the occurrence of the 
disturbance, assuming 𝑧𝑖𝑗𝑘

𝑚 = 0  (indicating that 

it is unknown whether the machine tool on 
which the next operation will be performed will 
change), the earliest possible start time 𝑟𝑖 of the 
next operation of the job after 𝑡𝑑 is calculated 
according to equation (4):  

𝑟𝑖 = 𝑡𝑑 = 

= max ({𝑐𝑖𝑗𝑘
𝑚 ⃒𝑐𝑖𝑗𝑘

𝑚 < 𝑡𝑑} , 𝑡𝑑) 
(4) 

It is necessary to determine the state of the 
machine tools at the moment 𝑡𝑑, that is, 
whether an operation is being performed on 
the machine at that moment or is the machine 
available. The earliest possible start time of the 
next operation 𝑂𝑖𝑗𝑘

𝑚  on machine 𝑚 after the 

disturbance occur is calculated using the 
following expression (5):  

𝑟𝑚 = 𝑐𝑖𝑗𝑘
𝑚 × 𝑧𝑖𝑗𝑘

𝑚 + 𝑡𝑑 × (1 − 𝑧𝑖𝑗𝑘
𝑚 ).   (5) 

At the moment the disturbance occurred, if 
the operation was being performed on machine 
tool 𝑚, it is assumed that 𝑧𝑖𝑗𝑘

𝑚 = 1, which 

indicates that the operation continues on the 
same machine tool, and equation (5) reduces to 
expression (6): 

𝑟𝑚 = 𝑐𝑖𝑗𝑘
𝑚 = 

= {𝑠𝑖𝑗𝑘
𝑚 + 𝑡𝑖𝑗𝑘

𝑚 ⃒𝑠𝑖𝑗𝑘
𝑚 < 𝑡𝑑 < 𝑐𝑖𝑗𝑘

𝑚 }. 
(6) 

If the operation 𝑂𝑖𝑗𝑘
𝑚  was completed prior to 

the arrival of the new job in the system, it is 
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assumed that 𝑧𝑖𝑗𝑘
𝑚 = 0  (indicating that it is 

unknown whether the next operation of the job 
𝑖 will be performed on the same machine tool), 
and equation (5) reduces to expression (7): 

𝑟𝑚 = 𝑡𝑑 = 

 = max ({𝑐𝑖𝑗𝑘
𝑚 ⃒𝑐𝑖𝑗𝑘

𝑚 < 𝑡𝑑} , 𝑡𝑑). 
(7) 

 
2.3 Machine breakdown 

 
In the case of a machine tool breakdown 

(Figure 5), the completed operations O11, O12, 
O21, O31, and O32, are excluded from 
rescheduling, as well as operation O33, which 
was in progress on a machine unaffected by the 
failure. On the other hand, operation O22, 
which was being processed on the failed 
machine, must be reassigned to an alternative 
machine tool. The earliest possible start time of 
the next operation of job 𝑖 after the occurrence 
of the disturbance can be calculated using the 
equation (8): 

𝑟𝑖 = 𝑐𝑖𝑗𝑘
𝑚 × 𝑧𝑖𝑗𝑘

𝑚 + 𝑡𝑚𝑏 × (1 − 𝑧𝑖𝑗𝑘
𝑚 ),  

𝑚 ≠ 𝑟; 
(8) 

𝑟 represents the machine tool that has failed. 
If 𝑚 ≠ 𝑟, two possible cases arise. The first 

case occurs when operation 𝑂𝑖𝑗𝑘
𝑚  was 

performing at the moment of the failure of 
another machine tool, in which case 𝑧𝑖𝑗𝑘

𝑚 = 1, 

i.e., the operation continues to be performed 
on machine 𝑚, and the equation (8) reduces to 
the equation (9): 

𝑟𝑖 = 𝑐𝑖𝑗𝑘
𝑚 = 

= {𝑠𝑖𝑗𝑘
𝑚 + 𝑡𝑖𝑗𝑘

𝑚 ⃒𝑠𝑖𝑗𝑘
𝑚 < 𝑡𝑚𝑏 < 𝑐𝑖𝑗𝑘

𝑚 }. 
(9) 

The second case applies when operation 
𝑂𝑖𝑗𝑘
𝑚  was completed before the failure of the 

other machine tool, in which case 𝑧𝑖𝑗𝑘
𝑚 = 0, 

since it is unknown whether the next operation 
of job 𝑖 will be performed on the same machine 
𝑚 as the previous one, as presented in the 
equation (10): 

𝑟𝑖 = 𝑡𝑚𝑏 = 

= max ({𝑐𝑖𝑗𝑘
𝑚 ⃒𝑐𝑖𝑗𝑘

𝑚 < 𝑡𝑚𝑏} , 𝑡𝑚𝑏) , 𝑖 ∈ 𝑁. 
(10) 

If 𝑚 = 𝑟 and 𝑠𝑖𝑗𝑘
𝑚 < 𝑡𝑚𝑏 < 𝑐𝑖𝑗𝑘

𝑚 , this 

indicates that the machine tool on which the 
operation 𝑂𝑖𝑗𝑘

𝑚  was in progress has failed. The 

interrupted operation is transferred to a 
different machine tool for further processing, in 
which case 𝑧𝑖𝑗𝑘

𝑚 = 0, i.e., 𝑂𝑖𝑗𝑘
𝑚  will continue to 

be processed on alternative machine 𝑚, and 
equation (8) is replaced by equation (11):  

𝑟𝑖 = 𝑡𝑚𝑏 (11) 

Following the previous evaluation of the 
time when processing of job 𝑖 can be resumed 
–  𝑟𝑖, the time at which the machine tool 𝑚 can 
resume processing the job –  𝑟𝑚, is calculated 
according to expression (12): 

𝑟𝑚 = 𝑐𝑖𝑗𝑘
𝑚 × 𝑧𝑖𝑗𝑘

𝑚 + 𝑡𝑚𝑏 × (1 − 𝑧𝑖𝑗𝑘
𝑚 ), 𝑚 ≠ 𝑟. (12) 

 
3. GENETIC ALGORITHM-BASED SOLUTION 

METHODOLOGY 
 

A biologically inspired optimization method 
based on Genetic Algorithms (GA) is applied to 
obtain an optimal scheduling plan in 
accordance with the defined mathematical 
model. Each individual (chromosome) in the 
population consists of a primary substring, 
representing the operation sequence, and a 
secondary substring, encoding selected 
alternative manufacturing process plans. The 
initial population is generated based on the 
number of jobs and operations, while the 
fitness function is evaluated using the 
mathematical model for optimization defined 
in equation (1).   

The algorithm then iteratively performs the 
core steps of selection (via roulette wheel), 
crossover, and mutation, applying operators to 
both substrings to generate new solutions. This 
process allows the algorithm to explore a wide 
solution space, maintain diversity, and 
converge toward optimal or near-optimal 
schedules. A detailed implementation 
procedure of the GA is provided in [16].  

When a disturbance occurs, the GA 
generates an optimal rescheduling plan by 
repeating the same evolutionary steps, 
incorporating new jobs, excluding cancelled 
ones, or considering machine tool breakdowns. 
In this process, the initial population is 
generated to reflect the number of jobs 
remaining to be processed and the current 
state of the manufacturing system.  
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4. EXPERIMENTAL VERIFICATION AND 
DISCUSSION 

 
To verify the mathematical models for the 

Dynamic Flexible Job Shop Scheduling Problem 
(DFJSSP), considering three types of 
disturbances, three experiments were 
conducted using 24 problems of varying 
complexity, which encompassed 18 benchmark 
jobs, as comprehensively presented in [17]. The 
networks of alternative manufacturing 
processes for all jobs included in the 
experiments were also adopted from this 
reference.  

A genetic algorithm was used for both 
scheduling and rescheduling optimization, with 
the objective function makespan. The following 
genetic algorithm parameters were adopted for 
the initial scheduling phase: a population size of 
120, a maximum number of generations set to 
100, a crossover probability of pc = 0.6, and a 
mutation probability of pm = 0.2. For the 
rescheduling phase, the parameters were 
adjusted to a population size of 100, with a 
maximum number of generations set to 80, 
while keeping the crossover and mutation 
probabilities unchanged. The proposed method 
and the corresponding experiments are 
implemented and tested in the MATLAB® 
environment. Experiment 1 addresses the 
scheduling problem labeled as Problem 21, 
focusing on the arrival of three new jobs at 30s. 
Experiment 2 involves scheduling for Problem 
23 and analyzing the case of three jobs with 
cancellations occurring at 50s. Experiment 3 
corresponds to Problem 22 and analyzes the 
breakdown of two machine tools that occurs at 
40s.  

The scheduling problems differ in terms of 
the number of jobs and the number of 
operations. For each job, three alternative 
process plans were generated and used during 
the scheduling optimization. 
 
4.1 Arrival of new jobs 
 

The scheduling of selected manufacturing 
processes for the initial set of jobs (2-3-5-6-7-9-
10-11-13-14-16-18 – Problem 21) proceed 

without disturbance until the arrival of new 
jobs: 12, 15, and 17 into the manufacturing 
system at time 𝑡𝑛𝑒𝑤 = 30𝑠, at which point the 
rescheduling of the remaining operations is 
performed. In the first phase, prior to the 
arrival of the new jobs, a genetic algorithm 
generates the initial scheduling plan for the 
twelve jobs. After the arrival of the three new 
jobs, a new primary substring is formed, 
containing all unfinished operations of the 
initial jobs, as well as all operations of the new 
jobs, along with a new secondary substring 
that, compared to the initial one, also includes 
genes with information on the selected 
alternative manufacturing processes for the 
new jobs.  

If the machine tool on which the first 
operation of a new job should begin is available 
at time 𝑡𝑛𝑒𝑤 = 30𝑠, processing starts 
immediately. Otherwise, the operation waits 
until the current processing is completed. For 
all operations that are yet to start, the earliest 
possible start time is the sum of the arrival time 
of the new jobs and the transportation time 
from the previous machine tool (if the previous 
and following operations are performed on 
different machines; otherwise, transportation 
time is disregarded). Operations that are in 
progress continue until completion. Afterward, 
according to the selected manufacturing 
process, the next operation either immediately 
starts on the same machine tool or the job is 
transferred to a different machine. In this way, 
the second phase of the algorithm performs 
rescheduling based on the new situation.  

 

Figure 6. Problem 21 initial scheduling  
(makespan = 134s) 
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Figure 6 illustrates the Gantt chart 
representing the initial, optimal scheduling plan 
before the arrival of the new jobs, with a total 
processing time (makespan) of 134 seconds for 
all 12 jobs.  

After the arrival of jobs 12, 15, and 17 at time 
𝑡𝑛𝑒𝑤 = 30𝑠 and the following rescheduling, a 
new rescheduled plan is generated (Figure 7). It 
is observed that in this case, the makespan was 
149s, indicating an increase in the total 
processing time due to the dynamic 
disturbance. Although the completion time is 
longer, the proposed approach successfully 
maintains the stability and functionality of the 
manufacturing system despite the disturbance 
caused by the arrival of new jobs. 

 

Figure 7. Rescheduling after arrival of new jobs 12, 

15, and 17 at 𝑡𝑛𝑒𝑤 = 30𝑠  
(makespan = 149s) 

 
4.2 Job cancellations 

 
The scheduling of selected manufacturing 

processes for the initial set of jobs (1-4-5-6-7-8-
9-11-12-13-14-15-16-17-18 – Problem 23) 
proceed without disturbance until the 
cancellation of certain jobs: 1, 7, and 17 in the 
manufacturing system at time 𝑡𝑐𝑎𝑛 = 50𝑠, at 
which point the rescheduling of the remaining 
operations is performed. In the first phase, 
before the cancellation event, a genetic 
algorithm generates an initial scheduling plan 
with selected alternative manufacturing 
processes for all fifteen jobs. After the 
cancellation of the three jobs, a new primary 
substring is generated containing all unfinished 

operations of the jobs remaining in the system, 
excluding all remaining operations of the 
cancelled jobs, as well as a new secondary 
substring which, compared to the initial one, 
excludes as many elements (genes) as there are 
jobs that stop processing from the cancellation 
time onward. 

Operations that have been completed 
before time 𝑡𝑐𝑎𝑛 = 50𝑠 remain fixed and are 
not subject to rescheduling. Operations that 
are in progress at the time of cancellation 
continue until completion if they belong to jobs 
that were not cancelled, while those belonging 
to cancelled jobs are interrupted immediately 
at that moment 𝑡𝑐𝑎𝑛. All operations of the 
cancelled jobs, whether in progress or not yet 
started, are removed from the rescheduling 
plan. For all remaining operations that have not 
yet begun, the earliest possible start time is set 
to the cancellation time 𝑡𝑐𝑎𝑛 plus 
transportation time from the previous machine 
(if the machine tool is different). The second 
phase of the algorithm performs rescheduling 
based on this updated set of twelve jobs.  

 

Figure 8. Problem 23 initial scheduling  
(makespan = 210s) 

Figure 8 shows the Gantt chart representing 
the initial, optimal scheduling plan before the 
cancellation of jobs, with a total processing 
time (makespan) of 210s for all fifteen jobs.  
After the cancellation of jobs 1, 7, and 17 at 
time 𝑡𝑐𝑎𝑛 = 50𝑠 and the following 
rescheduling, a new rescheduled plan is formed 
(Figure 9).  
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Figure 9. Rescheduling after cancellation of jobs 1, 

7, and 17 at 𝑡𝑐𝑎𝑛 = 50𝑠  
(makespan = 181s) 

It is observed that in this case, the makespan 
was reduced to 181s, reflecting the removal of 
processing due to job cancellations. The 
proposed approach effectively adapts to 
dynamic changes and maintains operational 
efficiency within the manufacturing system, 
despite disturbances caused by job 
cancellations. 

 
4.3 Machine tool breakdowns 

 
The scheduling of the selected 

manufacturing processes for the initial set of 
jobs (2-3-4-5-6-8-9-10-11-12-13-14-16-17-18 – 
Problem 22) proceed without disturbance until 
the breakdown of machine tools M6 and M11 
at time 𝑡𝑚𝑏 = 40𝑠,at which point the 
rescheduling of the remaining operations is 
performed. In the first phase, prior to the 
breakdown event, a genetic algorithm 
generates an initial scheduling plan that selects 
alternative manufacturing processes for all 
fifteen jobs. After the machine tool 
breakdowns, all operations assigned to the 
broken machine that are still in progress are 
interrupted. Operations that were completed 
before 𝑡𝑚𝑏 remain fixed and are excluded from 
rescheduling. Operations that were in progress 
on the broken machine tools at 𝑡𝑚𝑏 are halted 
and rescheduled from the beginning, 
considering alternative manufacturing 
processes that exclude the broken machines. 
Operations that were in progress on machine 
tools that remain functional at the moment the 

disturbance occurs, continue processing 
according to the initial plan until completion. 

A new primary substring is generated, 
containing the unfinished operations of all jobs, 
including those interrupted due to the 
breakdown, with updated processing routes 
that exclude the failed machine tools. A new 
secondary substring is also generated, including 
the updated selection of alternative 
manufacturing processes for the affected jobs. 
For all remaining operations yet to start, the 
earliest possible start time is set to the machine 
breakdown time 𝑡𝑚𝑏 plus the transportation 
time from the previous machine if the 
operation is not performed on the same 
machine tool. The second phase of the 
algorithm performs rescheduling based on this 
updated set of operations and manufacturing 
routes, adapting to the constraints imposed by 
the machine breakdown.  

 

Figure 10. Problem 22 initial scheduling  
(makespan = 134s) 

After the breakdowns at 𝑡𝑚𝑏 = 40𝑠  and the 
following rescheduling, a new rescheduling 
plan is formed and shown in Figure 11.  

Figure 10 shows the Gantt chart 
representing the initial, optimal scheduling plan 
before the machine tool breakdowns, with a 
total processing time (makespan) of 134s for all 
fifteen jobs.  
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Figure 11. Rescheduling after machine tools M6 

and M11 breakdown at 𝑡𝑚𝑏 = 40𝑠  
(makespan = 190s) 

The results show that the makespan 
increased to 190s, indicating an extension of 
the total processing time due to the 
disturbance caused by the machine 
breakdowns. Despite the increase in the 
makespan, the proposed approach effectively 
maintains the stability and functionality of the 
manufacturing system by dynamically adapting 
the scheduling to the changed conditions. 
 
5. CONCLUSION 

 
This paper has presented a comprehensive 

approach to the Dynamic Flexible Job Shop 
Scheduling Problem (DFJSSP) under the 
influence of three types of disturbances: the 
arrival of new jobs, job cancellations, and 
machine tool breakdowns. Importantly, these 
disturbances are considered not only as typical 
dynamic events but also as potential 
consequences of cyber-attacks targeting 
manufacturing systems, which highlights the 
growing cybersecurity risks within modern 
production environments. 

A genetic algorithm-based methodology was 
developed and implemented in the MATLAB® 
environment, enabling effective real-time 
rescheduling that minimizes total processing 
time (makespan). The experimental evaluation 
was performed on benchmark problems, 
demonstrating that the proposed approach 
maintains high scheduling efficiency and 
adaptability despite the presence of dynamic 
and cyber-induced disturbances. The results 

validate that the methodology can successfully 
manage and reduce the negative impact of such 
disturbances on production performance, thus 
supporting the Industry 4.0 concept of 
intelligent, flexible, and secure manufacturing 
systems.  

In particular, three separate experiments 
were carried out to evaluate the rescheduling 
capabilities of the proposed solution under 
different types of disturbances. The first 
experiment analyzed the arrival of three new 
jobs into the system, requiring the integration 
of their operations into the existing schedule. 
The second experiment examined the 
cancellation of three jobs, focusing on the 
adaptation of the schedule by removing 
unfinished operations and redistributing 
available resources. The third experiment 
addressed the breakdown of two machine 
tools, requiring the reassignment of operations 
that were either ongoing or planned for the 
failed machines to alternative machines. Across 
all three cases, the genetic algorithm 
successfully adjusted the scheduling plans, 
demonstrating resilience, efficiency, and 
robustness in dynamically changing 
environments that could originate from or be 
aggravated by coordinated cyber-attacks. This 
research opens numerous paths for further 
investigation to improve the robustness and 
applicability of DFJSS in cybersecurity-aware 
manufacturing environments. First, future 
studies could incorporate the explicit modeling 
of machine tool downtime, including the 
waiting time until the failure is resolved and the 
machine becomes available again. This would 
provide a more realistic representation of 
manufacturing disturbances, enabling more 
precise rescheduling strategies. 

Moreover, the simultaneous occurrence of 
multiple disturbances, possibly caused or 
aggravated by coordinated cyber-attacks, 
within the same manufacturing system poses 
complex rescheduling challenges. Future 
research could focus on developing integrated 
rescheduling frameworks that consider all such 
disturbances together, improving the system’s 
resilience to sequential disturbances. 
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In terms of optimization approaches, it is 
valuable to explore and compare alternative 
metaheuristic algorithms (e.g., Ant Colony 
Optimization, Particle Swarm Optimization, or 
hybrid methods) for dynamic scheduling 
problems, to evaluate their relative 
performance, convergence behavior, and 
adaptability under dynamic and cybersecurity-
related disturbances. 
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