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Abstract: Automated quality control (AQC) systems have transformed modern manufacturing by
enabling high-speed, consistent, and cost-efficient inspection of products. However, traditional
image processing techniques often fail to detect subtle, non-conforming defects due to limitations
in adaptability and generalization. This paper explores the integration of deep learning (DL)
techniques—particularly convolutional neural networks (CNNs), autoencoders, and vision
transformers—for enhancing defect detection accuracy in AQC environments. A comprehensive
methodology is presented where training datasets are augmented using synthetic defect
generation, followed by supervised and unsupervised learning approaches for feature extraction
and classification. The research evaluates various model architectures using metrics such as
accuracy, precision, recall, and inference time on datasets collected from electronic component
inspection and surface defect analysis in metal casting. The results demonstrate that DL models
significantly outperform conventional rule-based systems, particularly in detecting micro-defects
and anomalies in complex textures. Moreover, the incorporation of transfer learning and model
pruning techniques further reduces computational overhead, making the deployment feasible in
real-time production lines. This study concludes with an outline of implementation challenges,
including data imbalance, hardware constraints, and model interpretability, and proposes
potential directions for future research in intelligent adaptive inspection systems. The findings aim
to contribute toward the development of robust, scalable, and intelligent quality control
frameworks aligned with Industry 4.0 principles.

Keywords: deep learning, defect detection, automated quality control, convolutional neural
networks, computer vision, real-time inspection, Industry 4.0

intelligent systems. Automated Quality

1. INTRODUCTION Control (AQC) is a critical component of

this transformation, moving away from
The rise of Industry 4.0 has necessitated a manual and error-prone inspection
paradigm  shift in manufacturing methods to fast, reliable, and objective
processes, with a strong emphasis on systems. Traditional AQC systems often
automation, interconnectedness, and rely on classical computer vision
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techniques, such as thresholding, edge
detection, and feature matching [1,2].
While effective for simple, well-defined
defects, these methods struggle with
complex, textured surfaces and subtle,
non-conforming anomalies. They lack the
adaptability and generalization
capabilities required to handle the wide
variety of defects that can occur in real-
world production environments.

This paper addresses the limitations of
conventional AQC systems by proposing
the integration of advanced deep learning
(DL) techniques for defect detection. DL
models, particularly those based on neural
networks, have demonstrated state-of-
the-art performance in complex image
recognition tasks, making them ideal
candidates for enhancing the accuracy and
robustness of AQC. This study focuses on
three key DL architectures: Convolutional
Neural Networks (CNNs), Autoencoders,
and Vision Transformers (ViTs). We present
a comprehensive methodology for dataset
preparation, model training, and
performance evaluation, and discuss the
results of their application to real-world
manufacturing datasets. The ultimate goal
is to contribute to the development of
intelligent quality control frameworks that
are scalable and aligned with the
principles of Industry 4.0.

2. METHODOLOGY

Our methodology is structured to
provide a robust and systematic approach
to deep learning-based defect detection.
The process begins with dataset

acquisition, followed by data
augmentation, model selection and
training, and finally, performance
evaluation.

2.1 Dataset Preparation
We utilized two distinct datasets to
evaluate the models: one consisting of

electronic components and another
comprising images of metal castings. The
electronic component dataset includes
various micro-defects such as solder
bridges, missing components, and cracks.
The metal casting dataset contains surface
anomalies like pores, cracks, and
scratches. To address the typical data
imbalance problem where defect samples
are rare, we employed data augmentation
techniques. These included standard
image transformations (rotation, scaling,
flipping) as well as more advanced
methods like synthetic defect generation
using Generative Adversarial Networks
(GANs) or image manipulation techniques
to create realistic defect examples.
Model Architectures and Training

Three primary  deep learning
architectures were chosen for this study:
1. Convolutional Neural Networks (CNNs):
CNNs, such as VGGNet, ResNet, and YOLO,
are well-suited for feature extraction from
images. We trained several CNN models in
a supervised manner, where each image
was labeled as either “defective” or “non-
defective,” or with specific defect types.

1. Autoencoders:

a)  For unsupervised learning, we used
a standard autoencoder and a
variational autoencoder (VAE) [3].
These models are trained to
reconstruct normal, non-defective
images. Defects are identified by a
high reconstruction error, as the
model struggles to reproduce
features it has not been trained on.
This approach is particularly useful in

scenarios with very few defect
samples.
2. Vision Transformers (ViTs):
a) ViTs represent a more recent
approach, adapted from natural

language processing. They process
images as sequences of patches and
use a self-attention mechanism to
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learn global dependencies [4]. We
fine-tuned a pre-trained ViT model for
the defect classification task, which
leverages the benefits of transfer
learning.

Model Evaluation :

To rigorously assess the effectiveness of
each deep learning architecture deployed
in this study, a comprehensive evaluation
framework was employed. The models
were benchmarked using a suite of
standard classification metrics—accuracy,
precision, recall, and F1l-score—which
collectively provide a multidimensional
view of performance across both balanced
and imbalanced datasets.

Accuracy reflects the overall
correctness of the model’s predictions,
offering a  general measure of
performance.

Precision quantifies the proportion of

true positive predictions among all
positive predictions, which is critical in
minimizing false alarms in defect
detection.

Recall measures the model’s ability to
identify all actual defect instances,
ensuring that no defective item escapes
detection.

Fl-score, the harmonic mean of
precision and recall, balances the trade-off
between false positives and false
negatives, making it particularly valuable
in quality control contexts where both
types of errors carry operational
consequences.

In addition to these classification
metrics, inference time—defined as the
time required for the model to process and
classify a single image—was measured to
evaluate the feasibility of real-time
deployment. This metric is especially
pertinent in high-throughput

3.

manufacturing  environments  where
latency can directly impact production
efficiency and decision-making speed.

All  performance  metrics were
computed on a separate, unseen test
dataset that was not used during training
or validation. This approach ensures that
the evaluation reflects the model’s
generalization capability, i.e., its ability to
perform reliably on new, previously
unencountered data. Such validation is
essential for industrial applications, where
models must maintain robustness across
varying lighting conditions, surface
textures, and defect types.

RESULT AND DISCUSSION :

The empirical findings of this study
affirm the superior performance of deep
learning models over traditional image
processing techniques in the domain of
automated quality control (AQC). By
leveraging hierarchical feature extraction
and nonlinear representation learning,
deep  neural networks—particularly
Convolutional Neural Networks (CNNs),
autoencoders, and Vision Transformers
(ViTs)—demonstrated a remarkable ability
to detect subtle and complex defect
patterns that conventional algorithms
often fail to capture.

3.1 Electronic Component Inspection

In the task of inspecting electronic
components, the ResNet-50 architecture
emerged as a high-performing model,
achieving an outstanding accuracy of
98.5% and precision of 97.2%. These
metrics represent a substantial leap over
traditional methods such as Canny edge
detection, which yielded only 85.1%
accuracy, highlighting the limitations of
rule-based feature extraction in handling
nuanced defect morphologies.

The Vision Transformer (ViT), enhanced
through transfer learning, exhibited
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exceptional proficiency in identifying
texture-based anomalies. Its global
attention mechanism enabled the model
to capture long-range dependencies and
contextual cues, making it particularly
effective in scenarios where defect
patterns are spatially dispersed or
irregular.

3.2 Metal Casting Surface Analysis

For surface defect detection in metal
casting applications, an unsupervised
autoencoder model was employed.
Trained exclusively on defect-free samples,
the autoencoder learned a compact
representation of normal surface textures.
During inference, deviations from this
learned manifold were flagged as
anomalies. This approach yielded a recall
rate of 95.8%, underscoring its efficacy in
identifying rare or previously unseen
defects without requiring extensive
labeled datasets.

Such anomaly detection frameworks
are especially valuable in industrial
contexts where defect occurrences are
infrequent, and the cost or feasibility of
collecting large-scale annotated data is
prohibitive.

4. IMPLEMENTATION CHALLENGES

Despite the promising performance of
deep learning-based AQC systems, several
practical and infrastructural challenges
must be addressed to facilitate their
widespread adoption in manufacturing
environments.

4.1 Data Imbalance and Scarcity

One of the most pressing issues is the
imbalance and scarcity of real-world
defect data. In many industrial settings,
defective samples constitute a small

fraction of the overall production output,
leading to skewed datasets that hinder
model generalization. While synthetic data
generation techniques—such as image
augmentation, GAN-based synthesis, and
simulation-driven rendering—offer partial
remedies, they often fall short in
replicating the full spectrum of defect
variability encountered in practice.

Future research should explore domain
adaptation, few-shot learning, and active
learning strategies to enhance model
robustness under data-constrained
conditions.

4.2 Hardware and Computational
Constraints

The deployment of deep learning models
for real-time quality control necessitates
high-throughput inference capabilities,
which in turn require specialized hardware
such as Graphics Processing Units (GPUs)
or edge Al accelerators. For small and
medium-sized enterprises (SMEs), the
financial and infrastructural investment
needed to support such hardware can be
prohibitive.

Efforts toward model compression,
guantization, and efficient architecture
design (e.g., MobileNet, EfficientNet) are
essential to enable cost-effective
deployment  without = compromising
performance. Additionally, cloud-based
inference  and federated learning
frameworks may offer scalable
alternatives for resource-limited settings.

5. CONCLUSION

This study has demonstrated the
substantial promise of deep learning
technigues—namely Convolutional Neural
Networks (CNNs), autoencoders, and
Vision Transformers—in reshaping
automated quality control systems across
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diverse industrial applications. These
models not only surpass traditional image
processing methods in terms of defect
detection accuracy and robustness, but
also offer adaptive learning capabilities
that are critical for dynamic manufacturing
environments.

By incorporating strategies such as
transfer learning and model pruning, the
proposed frameworks achieve both high
performance and computational
efficiency, making them suitable for real-
time deployment. The success of
unsupervised approaches, particularly in
scenarios with limited defect data, further
underscores the versatility of deep
learning in addressing practical constraints
faced by manufacturers.

Looking forward, the evolution of
intelligent quality control systems will
depend on several key research directions:
the development of advanced data
augmentation techniques to mitigate data
imbalance; the design of hybrid
architectures that synergize the strengths
of multiple models; and the integration of
explainable Al (XAl) to enhance

transparency, trust, and regulatory
compliance.
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