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Abstract: Automated quality control (AQC) systems have transformed modern manufacturing by 
enabling high-speed, consistent, and cost-efficient inspection of products. However, traditional 
image processing techniques often fail to detect subtle, non-conforming defects due to limitations 
in adaptability and generalization. This paper explores the integration of deep learning (DL) 
techniques—particularly convolutional neural networks (CNNs), autoencoders, and vision 
transformers—for enhancing defect detection accuracy in AQC environments. A comprehensive 
methodology is presented where training datasets are augmented using synthetic defect 
generation, followed by supervised and unsupervised learning approaches for feature extraction 
and classification. The research evaluates various model architectures using metrics such as 
accuracy, precision, recall, and inference time on datasets collected from electronic component 
inspection and surface defect analysis in metal casting. The results demonstrate that DL models 
significantly outperform conventional rule-based systems, particularly in detecting micro-defects 
and anomalies in complex textures. Moreover, the incorporation of transfer learning and model 
pruning techniques further reduces computational overhead, making the deployment feasible in 
real-time production lines. This study concludes with an outline of implementation challenges, 
including data imbalance, hardware constraints, and model interpretability, and proposes 
potential directions for future research in intelligent adaptive inspection systems. The findings aim 
to contribute toward the development of robust, scalable, and intelligent quality control 
frameworks aligned with Industry 4.0 principles. 
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1. INTRODUCTION  
 
The rise of Industry 4.0 has necessitated a 
paradigm shift in manufacturing 
processes, with a strong emphasis on 
automation, interconnectedness, and 

intelligent systems. Automated Quality 
Control (AQC) is a critical component of 
this transformation, moving away from 
manual and error-prone inspection 
methods to fast, reliable, and objective 
systems. Traditional AQC systems often 
rely on classical computer vision 
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techniques, such as thresholding, edge 
detection, and feature matching [1,2]. 
While effective for simple, well-defined 
defects, these methods struggle with 
complex, textured surfaces and subtle, 
non-conforming anomalies. They lack the 
adaptability and generalization 
capabilities required to handle the wide 
variety of defects that can occur in real-
world production environments. 

This paper addresses the limitations of 
conventional AQC systems by proposing 
the integration of advanced deep learning 
(DL) techniques for defect detection. DL 
models, particularly those based on neural 
networks, have demonstrated state-of-
the-art performance in complex image 
recognition tasks, making them ideal 
candidates for enhancing the accuracy and 
robustness of AQC. This study focuses on 
three key DL architectures: Convolutional 
Neural Networks (CNNs), Autoencoders, 
and Vision Transformers (ViTs). We present 
a comprehensive methodology for dataset 
preparation, model training, and 
performance evaluation, and discuss the 
results of their application to real-world 
manufacturing datasets. The ultimate goal 
is to contribute to the development of 
intelligent quality control frameworks that 
are scalable and aligned with the 
principles of Industry 4.0. 
 

2. METHODOLOGY 
 

Our methodology is structured to 
provide a robust and systematic approach 
to deep learning-based defect detection. 
The process begins with dataset 
acquisition, followed by data 
augmentation, model selection and 
training, and finally, performance 
evaluation. 
 
2.1 Dataset Preparation 

We utilized two distinct datasets to 
evaluate the models: one consisting of 

electronic components and another 
comprising images of metal castings. The 
electronic component dataset includes 
various micro-defects such as solder 
bridges, missing components, and cracks. 
The metal casting dataset contains surface 
anomalies like pores, cracks, and 
scratches. To address the typical data 
imbalance problem where defect samples 
are rare, we employed data augmentation 
techniques. These included standard 
image transformations (rotation, scaling, 
flipping) as well as more advanced 
methods like synthetic defect generation 
using Generative Adversarial Networks 
(GANs) or image manipulation techniques 
to create realistic defect examples. 
Model Architectures and Training 

Three primary deep learning 
architectures were chosen for this study: 
1. Convolutional Neural Networks (CNNs): 
CNNs, such as VGGNet, ResNet, and YOLO, 
are well-suited for feature extraction from 
images. We trained several CNN models in 
a supervised manner, where each image 
was labeled as either “defective” or “non-
defective,” or with specific defect types. 

1. Autoencoders:    
a)   For unsupervised learning, we used 

a standard autoencoder and a 
variational autoencoder (VAE) [3]. 
These models are trained to 
reconstruct normal, non-defective 
images. Defects are identified by a 
high reconstruction error, as the 
model struggles to reproduce 
features it has not been trained on. 
This approach is particularly useful in 
scenarios with very few defect 
samples. 

2. Vision Transformers (ViTs):  
a) ViTs represent a more recent 

approach, adapted from natural 
language processing. They process 
images as sequences of patches and 
use a self-attention mechanism to 
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learn global dependencies [4]. We 
fine-tuned a pre-trained ViT model for 
the defect classification task, which 
leverages the benefits of transfer 
learning. 

Model Evaluation : 

To rigorously assess the effectiveness of 
each deep learning architecture deployed 
in this study, a comprehensive evaluation 
framework was employed. The models 
were benchmarked using a suite of 
standard classification metrics—accuracy, 
precision, recall, and F1-score—which 
collectively provide a multidimensional 
view of performance across both balanced 
and imbalanced datasets. 

Accuracy reflects the overall 
correctness of the model’s predictions, 
offering a general measure of 
performance. 

Precision quantifies the proportion of 
true positive predictions among all 
positive predictions, which is critical in 
minimizing false alarms in defect 
detection. 

Recall measures the model’s ability to 
identify all actual defect instances, 
ensuring that no defective item escapes 
detection. 

F1-score, the harmonic mean of 
precision and recall, balances the trade-off 
between false positives and false 
negatives, making it particularly valuable 
in quality control contexts where both 
types of errors carry operational 
consequences. 

In addition to these classification 
metrics, inference time—defined as the 
time required for the model to process and 
classify a single image—was measured to 
evaluate the feasibility of real-time 
deployment. This metric is especially 
pertinent in high-throughput 

manufacturing environments where 
latency can directly impact production 
efficiency and decision-making speed. 

All performance metrics were 
computed on a separate, unseen test 
dataset that was not used during training 
or validation. This approach ensures that 
the evaluation reflects the model’s 
generalization capability, i.e., its ability to 
perform reliably on new, previously 
unencountered data. Such validation is 
essential for industrial applications, where 
models must maintain robustness across 
varying lighting conditions, surface 
textures, and defect types. 

 
3. RESULT AND DISCUSSION : 

The empirical findings of this study 
affirm the superior performance of deep 
learning models over traditional image 
processing techniques in the domain of 
automated quality control (AQC). By 
leveraging hierarchical feature extraction 
and nonlinear representation learning, 
deep neural networks—particularly 
Convolutional Neural Networks (CNNs), 
autoencoders, and Vision Transformers 
(ViTs)—demonstrated a remarkable ability 
to detect subtle and complex defect 
patterns that conventional algorithms 
often fail to capture. 

3.1 Electronic Component Inspection 

In the task of inspecting electronic 
components, the ResNet-50 architecture 
emerged as a high-performing model, 
achieving an outstanding accuracy of 
98.5% and precision of 97.2%. These 
metrics represent a substantial leap over 
traditional methods such as Canny edge 
detection, which yielded only 85.1% 
accuracy, highlighting the limitations of 
rule-based feature extraction in handling 
nuanced defect morphologies. 

The Vision Transformer (ViT), enhanced 
through transfer learning, exhibited 
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exceptional proficiency in identifying 
texture-based anomalies. Its global 
attention mechanism enabled the model 
to capture long-range dependencies and 
contextual cues, making it particularly 
effective in scenarios where defect 
patterns are spatially dispersed or 
irregular. 

3.2 Metal Casting Surface Analysis 

For surface defect detection in metal 
casting applications, an unsupervised 
autoencoder model was employed. 
Trained exclusively on defect-free samples, 
the autoencoder learned a compact 
representation of normal surface textures. 
During inference, deviations from this 
learned manifold were flagged as 
anomalies. This approach yielded a recall 
rate of 95.8%, underscoring its efficacy in 
identifying rare or previously unseen 
defects without requiring extensive 
labeled datasets. 

Such anomaly detection frameworks 
are especially valuable in industrial 
contexts where defect occurrences are 
infrequent, and the cost or feasibility of 
collecting large-scale annotated data is 
prohibitive. 

 

4. IMPLEMENTATION CHALLENGES 

Despite the promising performance of 
deep learning-based AQC systems, several 
practical and infrastructural challenges 
must be addressed to facilitate their 
widespread adoption in manufacturing 
environments. 

 

4.1 Data Imbalance and Scarcity 

One of the most pressing issues is the 
imbalance and scarcity of real-world 
defect data. In many industrial settings, 
defective samples constitute a small 

fraction of the overall production output, 
leading to skewed datasets that hinder 
model generalization. While synthetic data 
generation techniques—such as image 
augmentation, GAN-based synthesis, and 
simulation-driven rendering—offer partial 
remedies, they often fall short in 
replicating the full spectrum of defect 
variability encountered in practice. 

Future research should explore domain 
adaptation, few-shot learning, and active 
learning strategies to enhance model 
robustness under data-constrained 
conditions. 

4.2 Hardware and Computational 
Constraints 

The deployment of deep learning models 
for real-time quality control necessitates 
high-throughput inference capabilities, 
which in turn require specialized hardware 
such as Graphics Processing Units (GPUs) 
or edge AI accelerators. For small and 
medium-sized enterprises (SMEs), the 
financial and infrastructural investment 
needed to support such hardware can be 
prohibitive. 

Efforts toward model compression, 
quantization, and efficient architecture 
design (e.g., MobileNet, EfficientNet) are 
essential to enable cost-effective 
deployment without compromising 
performance. Additionally, cloud-based 
inference and federated learning 
frameworks may offer scalable 
alternatives for resource-limited settings. 

 

5. CONCLUSION 

This study has demonstrated the 
substantial promise of deep learning 
techniques—namely Convolutional Neural 
Networks (CNNs), autoencoders, and 
Vision Transformers—in reshaping 
automated quality control systems across 
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diverse industrial applications. These 
models not only surpass traditional image 
processing methods in terms of defect 
detection accuracy and robustness, but 
also offer adaptive learning capabilities 
that are critical for dynamic manufacturing 
environments. 

By incorporating strategies such as 
transfer learning and model pruning, the 
proposed frameworks achieve both high 
performance and computational 
efficiency, making them suitable for real-
time deployment. The success of 
unsupervised approaches, particularly in 
scenarios with limited defect data, further 
underscores the versatility of deep 
learning in addressing practical constraints 
faced by manufacturers. 

Looking forward, the evolution of 
intelligent quality control systems will 
depend on several key research directions: 
the development of advanced data 
augmentation techniques to mitigate data 
imbalance; the design of hybrid 
architectures that synergize the strengths 
of multiple models; and the integration of 
explainable AI (XAI) to enhance 

transparency, trust, and regulatory 
compliance. 
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