

ICPES 2025

40th INTERNATIONAL CONFERENCE ON PRODUCTION ENGINEERING - SERBIA 2025

DOI: <u>10.46793/ICPES25.139M</u>

University of Nis Faculty of Mechanical Engineering

Nis, Serbia, 18 - 19th September 2025

CRITERIA FOR SELECTING GEAR MANUFACTURING METHODS

Aleksandar MILTENOVIĆ¹, Damjan RANGELOV¹, Marko PERIĆ¹, Lazar STOJANOVIĆ¹

Orcid: 0000-0002-1453-2548; Orcid: 0000-0003-3071-893X;

¹Faculty of Mechanical Engineering, University of Niš, Niš, Serbia

*Corresponding author: aleksandar.miltenovic@masfak.ni.ac.rs

Abstract: Gear can be produced on many processes, such as conventional ones like traditional machining (hobbing, shaping, milling) and forming methods (casting, forging, molding) to modern techniques like additive manufacturing. Selecting an optimal gear production method is a complex multi-criteria decision that significantly impacts the gear's quality, performance, cost, and production efficiency. The topic of this paper is a discussion of the key selection criteria for gear manufacturing methods in light of current needs and technological advancements. These criteria include the gear material, geometry and type of gear, required precision and quality level, production volume, cost, gear size, load carrying capacity, and lead time. For each criterion, brief academic explanations are provided to illustrate how it influences the choice of manufacturing process. The goal is to provide an overview for engineers responsible for developing machines with gears.

Keywords: gears, manufacturing, machining, forming, unconventional manufacturing

1. INTRODUCTION

Gears are critical mechanical components used to transmit motion and torque, and they can be manufactured by numerous methods. No single manufacturing process is ideal for all gear types or applications and the optimal method depends on a combination of factors.

Important criteria include the gear's material, its geometry (type and complexity), the precision or requested tolerances, expected production volume, economic cost, physical size of the gear, desired performance (e.g. load carrying capacity, noise level, environmental resistance), and allowable lead time for production. Each of these factors can strongly influence which manufacturing process is most suitable. For instance,

producing high-precision steel gears in low quantities requires different methods than mass-producing inexpensive plastic gears, which are less reliable. All the manufacturing technologies with additional information are given in Table 1.

2. MATERIAL CONSIDERATIONS

The gear material fundamentally narrows the possible manufacturing processes. In some cases, gear must be produced with a special material, as specified in standards, such as in the case of worm gears, which are made primarily from special bronze (Fig. 2).

Metallic gears are typically produced by machining or metal-forming processes, whereas plastic gears are often injection molded or machined from plastic stock. Material properties like strength, hardness, and melting point can determine suitable methods. For instance, high-strength steels can handle heavy loads and are preferred in high-stress,

Metals can be machined to very high accuracy or ground after heat treatment for precision, and they can also be cast or sintered (powder metallurgy) for near-net shapes. Harder metals may be difficult to machine and

Table 1. Overview of manufacturing methods for gears

Method		Characteristics	Advantages	Disadvantages
Conventional	Milling	Cutting involute profile	Simple, widely available	Limited accuracy,
		with a cutter	equipment	lower productivity
	Gear hobbing	Continuous cutting	High productivity	Special equipment
	Shaping	Cutting teeth with a gear	Suitable for internal gears	Slow process, noisy
	Gear grinding	shaper Fine finishing of tooth	High accuracy and surface	Expensive, slow
	Gear grinuing	flanks	quality	process
	Broaching	Cutting internal gears with	Fast for serial production	Rough finishing, low
	Бгоаснінд	a special tool	rast for serial production	accuracy
	Saw cutting	Cutting simple gears	Simple, low-cost	Rough finishing, low
				accuracy
Unconventional	Electrical Discharge	Wire or die-sinking	High precision, complex	Slow, high energy
	Machining (EDM)	shaping of gear teeth	shapes	consumption
	Laser cutting and	Cutting gears with laser	Fast prototyping	Limited for thick
	machining			materials
	Chemical etching	Chemical removal of	For micro-gears, thin	Limited to thin
		material	metals	materials
	Ultrasonic machining	Abrasive shaping with	Hard materials machining	Slow, requires special
		ultrasonic vibrations		equipment
	Hydroforming	Shaping thin-walled gears	Good material structure,	Limited to specific
		by fluid pressure	thin walls	applications
	Plastic deformation	Forging or rolling teeth	High gear strength	Expensive equipment
	(forging, rolling)			
	Sintering (Powder	Pressing metal powder in a	Low unit cost for mass	Small size only
	metallurgy)	die and sintering	produc., good repeat.	
	Additive manufa-	SLS, SLA, FDM	Fast prototyping, complex	Low strength
	cturing (3D printing)	prototyping	shapes	(plastic), accuracy
plastic gears	Injection molding	Flexible, no expensive	High productivity, low cost	Expensive molds,
		molds	in mass product.	lower precision
	CNC milling	Machining plastic gears on	Flexible, no expensive	Higher cost per unit,
		CNC machines	molds	slow product.
	Extrusion and	Extrusion of plastic	Simple for basic shapes	Limited shaping,
	cutting	profiles, gear cutting		lower precision

high-precision gears. Steel and other metals can be forged or machined to achieve the required properties and accuracy; indeed, forged steel gears benefit from a grain flow that imparts superior fatigue strength. In contrast, plastics are used in less demanding applications and offer advantages such as light weight and self-lubrication, but they cannot be forged or cast in the same manner as metals. Instead, injection molding is the go-to high-volume process for plastic gears.

might favor processes like precision forging or require annealing steps. Plastics, on the other hand, can be molded in complex shapes efficiently; however, not all plastics mold easily (Fig. 1).

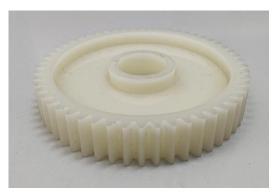


Figure 1. Plastic gear made by inject molding

3. GEAR GEOMETRY AND COMPLEXITY

The gear geometry – including tooth profile, helix angle, and overall shape (spur, helical, bevel, worm, internal gear, etc.) – strongly influences which processes are feasible. For example, spur gears with external teeth are relatively straightforward to manufacture; they can be cut by standard hobbing or milling with relative ease. Helical gears, however, require precise control of the helix angle and typically need specialized hobbing or 5-axis machining. Bevel gears and worm gears often cannot be made by the same equipment used for spur/helical gears and they demand dedicated gear cutting machines (Gleason cutting for bevel gears, thread grinding for worms - Fig. 2).

Figure 2. Worm gear set with center distance 30 mm in which worm gear is made from bronze

Gears with internal tooth geometry pose additional complexity. Traditional hobbing machines can cut external spur and helical teeth efficiently but cannot cut internal gears. In such cases, processes like gear shaping or broaching are required — a gear shaper uses a cutter that reciprocates to form teeth and can

create internal gears or other profiles that hobbing cannot handle. This means that if a design calls for an internal gear or a cluster gear arrangement, the manufacturing method must be one that supports internal geometry (shaping, broaching, or possibly additive manufacturing), whereas simple external gears give more flexibility in method (hobbing, milling, etc.). Likewise, very fine-pitch gears or non-standard tooth profiles might necessitate wire EDM or additive manufacturing.

4. REQUIRED PRECISION AND QUALITY

Gears are classified by quality grades (ISO standard), which specify tolerances on tooth dimensions, runout, surface finish, etc. The required precision level is directly tied to the capabilities of the manufacturing method. If a gear must have very tight tolerances, the manufacturing process must either inherently achieve precision or include finishing steps.

Machining processes, especially with CNC, can achieve very tight tolerances on gear tooth geometry – gear hobbing or shaping followed by gear grinding is commonly used for high-precision metal gears. Grinding or lapping as a post-process can correct small deviations from heat treatment or prior processes. In contrast, injection molding of plastic gears yields comparatively looser tolerances due to material shrinkage and mold limitations; these gears are usually for moderate precision needs where some inaccuracy is acceptable. Machined plastic gears, however, can be cut with finer tolerances and less variability.

Powder metallurgy can produce gears with minimal post-processing, but shrinkage in sintering and porosity mean such gears usually achieve only modest precision and often need sizing or surface finishing. Stamping/blanking sheet metal can rapidly create gear forms, but the process is generally limited to thin gears with relatively coarse tolerances and may produce burrs or distortion that affect precision.

5. COST AND PRODUCTION VOLUME

The number of gears to be produced is one of the most decisive factors in process selection. Some manufacturing methods have high fixed costs but low per-unit costs, making them economical only when producing large volumes. Injection molding exemplifies a high-volume method. It requires an mold tool and setup, but once the mold is made, thousands of plastic gears can be produced very cheaply and quickly.

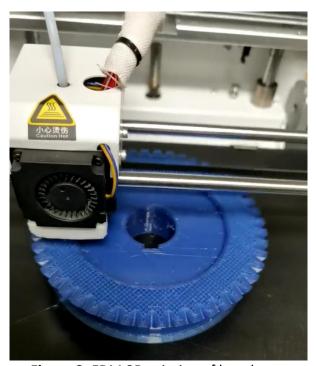


Figure 3. FDM 3D printing of bevel gear

Machining is generally more expensive per part due to longer cycle times and material waste, but it is "economical for small runs or prototypes" when avoiding fixed costs. Also, 3D printing (Fig. 3) can produce one-off gears or very low volumes quickly; although each printed part's cost would be unacceptable for mass production, it can be justified for prototyping. Blanking/stamping is in between – the dies are costly, but once made, stamping out sheet-metal gears is extremely fast. In summary, the expected production volume funnels the choice: high-volume projects favor methods like injection molding, die casting, forging, or sintering that spread costs over many units. Low-volume or one-off production

leans toward machining or possibly additive manufacturing despite higher unit costs, because those avoid large initial investments and can adapt quickly to design changes. A careful economic analysis is often performed to compare the total cost for the anticipated quantity under different processes, ensuring the chosen method aligns with the project's volume and budget constraints.

Additionally, labor costs must be taken into account. For instance, precision CNC machining and grinding produce excellent gears but are labor- and time-intensive, thereby driving up the costs of each part.

Cost is also affected by material utilization. Machining operations are wasteful by nature — a large portion of expensive metal might end up as chips, which is material cost lost.

6. GEAR SIZE AND SCALE

The physical size of the gear has a major impact on manufacturing method viability. Very large diameter gears (gears in heavy industrial equipment – Fig. 4, wind turbines, or large machinery measuring on the order of 1–4 m in diameter) are impractical to produce with certain methods.

Figure 4. Industrial gear with 3,5 m diameter used in copper mining industry

Hobbing or grinding extremely large gears is technically possible but requires specialized oversized machines and becomes timeconsuming. In such cases, casting is often the preferred method to create the gear blank or even the rough gear teeth, because pouring molten metal can fill a large gear shape more easily than trying to cut it from a solid billet.

For moderate-size metal gears in that range or smaller, forging can produce a strong nearnet shape which might then be machined to final precision. Small gears, on the other hand (millimeters to a few centimeters in size), can be produced by methods that might not suit large gears. Powder metallurgy is commonly used for small gears. Very small metallic or plastic gears can also be made by precision stamping or fine blanking if they are flat, or by micro-molding for plastics. For production of tiny gears - microgears should be used chemical etching.

7. MECHANICAL PROPERTIES

The operational demands on the gear (torque, speed, fatigue, shock, temperature, etc.) are important criteria for method selection. If a gear must handle very high loads or operate in critical, high-stress conditions, this usually dictates using a strong metal and a process that optimizes mechanical properties.

Forging is often chosen for such applications because forged metal has a refined grain flow and superior fatigue strength. On the other hand, casting generally yields lower strength due to potential porosity.

Powder metal gears are typically not as strong as wrought or forged gears because residual porosity and sintered microstructure limit their fatigue performance. Similarly, plastic gears have much lower load capacity and temperature resistance than metal gears; they are chosen for light-duty applications or where their self-lubricating and noise-damping qualities are advantageous.

Mechanical performance is not just about strength — wear and scuffing resistance, friction, and noise are also key. Hardened steel gears with smooth finish will wear slowly, but they may be noisier in operation. Plastic gears run quieter and do not require lubrication in many cases, which is a reason they are used.

However, plastics can creep over time and are sensitive to temperature and chemicals.

Heat treatment is another aspect: metal gears often undergo processes like carburizing, nitriding, or induction hardening after initial machining to improve wear and fatigue performance. This introduces another manufacturing consideration – some methods like forging already involve high-temperature deformation which can enhance properties, whereas machining just shapes the metal and then relies on separate heat treatments to harden it. The required surface hardness and core toughness will therefore influence whether a gear is, say, machined then casehardened, or forged then minimally machined, etc. If surface finish and contact fatigue are critical, a final grinding or honing may be introduce as final step.

8. LEAD TIME AND FLEXIBILITY

The urgency of production and flexibility in design changes also influence the process selection. Some methods entail substantial lead times, chiefly due to tooling fabrication. Injection molding requires designing and manufacturing a precision mold, similiary to sintering, which can take weeks to months. Die casting or forging dies similarly involve time-consuming tooling production. If a project cannot afford this upfront time, such methods are not practical. By contrast, CNC machining and 3D printing have much shorter lead times. A CNC-machined gear only requires a CAD model and programming, allowing a part to be made in hours or days.

9. CONCLUSION

Selecting a gear manufacturing method is a multi-factor optimization problem, requiring a holistic look at design requirements, material capabilities, and economic factors. The paper discusses the criteria based on which the appropriate manufacturing technology is selected, such as material, cost, precision,

quality, gear size, mechanical properties, and lead time. In the paper, an overview of manufacturing technologies that are of interest to engineers responsible for developing machines with gears is given.

REFERENCES

- [1] N. Harrison, "Gear Manufacturing 101: A Guide on the Gear Production Processes," RapidDirect Blog, May 6, 2022
- [2] Bartosch, "The Difference Between Injection Molded Plastic Gears and Machined Plastic Gears," Intech Power (Blog), Dec. 27, 2022.
- [3] "A Deep Dive into Custom Gear Manufacturing," Gear Technology India, Gear Technology India Magazine, 2023.
- [4] W. P. Crosher, "Gear Accuracy vs. Manufacturing Costs," Gear Solutions, Aug. 10, 2013.
- [5] D. McClements, "CNC Machining vs. Plastic Injection Molding: Differences and Comparison," Xometry, Sep. 12, 2022.