40th International Conference on Production Engineering of Serbia
ICPES 2025
Nis, Serbia, 18-19th september 2025
THERMOMECHANICAL PROCESSING OF NEAR BETA TITANIUM ALLOYS
Fernando Warchomicka, Esmaeil Shahryari, Ricardo Henrique Buzolin, Franz Ferraz, Miller Branco, Cecilia Poletti
DOI: 10.46793/ICPES25.132W
Near beta titanium alloys are promising materials for structural applications due to their high specific strength, good hardenability and fatigue resistance. The high performance of these alloys mainly depends on the type of microstructure, which can be engineered through thermomechanical processing. Based on the assumption that the beta stabilising elements affect the phase transformation and plastic deformation, this work aims to describe the deformation behaviour and subsequent microstructural changes by thermal activation in titanium alloys with different Mo equivalent. Hot compression tests of selected near beta titanium alloys (Ti-55531, Ti17 and Ti-xMo) were carried out in the beta and alpha+beta fields over a wide range of temperature, strain, and strain rate. The characterisation of the microstructural features after hot deformation was carried out by scanning electron microscopy images and electron backscatter diffraction measurements. This contributes to the analysis of the effect of deformation on the dynamic recovery followed by continuous dynamic recrystallisation in the beta field, and on the globularisation of the alpha phase in the alpha+beta field. The development and improvement of microstructure-based mesoscale models for near beta titanium alloys describe the behaviour of the material under plastic deformation, restoration, and phase transformation
Titanium alloys, hot deformation, metallography, modelling, restoration mechanisms
[1] G. Lütjering, J.C. Williams, Titanium, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. https://doi.org/10.1007/978-3-540-73036-1.
[2] M. Peters and C. Leyens: Titan und Titanlegierungen, Wiley-VCH, Köln, 2002, pp. 139–61.
[3] I. Weiss, S. L. Semiatin: Thermomechanical Processing of Beta Titanium Alloys: An Overview, Mater. Sci. Eng. A, 1998, vol. 243, pp. 46-65. doi:10.1016/S0921-5093(97)00783-1.
[4] T. Furuhara, Y. Toji, and T. Maki: in Ti-2003: Science and Technology, G. Luetjering and J. Albrecht, eds., Wiley-VCH, Weinheim, 2004, pp. 1219–26.
[5] D.G. Robertson, H. B. McShane: Isothermal hot deformation behaviour of metastable ß titanium alloy Ti-10V-2Fe-3AI, Mater. Sci. Technol., 1997, vol. 13, pp. 575-583.
[6] D.G. Robertson, H. B. McShane: Analysis of high temperature flow stress of titanium alloys IMI 550 and Ti-10V-2Fe-3AI during isothermal forging, Mater. Sci. Technol., 1998, vol. 14, pp. 339-345. https://doi.org/10.1179/mst.1998.14.4.33
[7] G. Glover, C. M. Sellars: Recovery and recrystallization during high temperature deformation of a-iron, Metall. Trans., 1973, vol. 4, pp. 765-775
[8] S. Gourdet, F. Montheillet: An experimental study of the recrystallization mechanism during hot deformation of aluminium, Mater. Sci. Eng. A, 2000, vol. 283, pp. 274-288
[9] M. E. Kassner, S. R. Barrabes: New developments in geometric dynamic recrystallization, Mater. Sci. Eng. A, 2005, vol. 410-411, pp. 152-155.
[10] F. Warchomicka, D. Canelo-Yubero, E. Zehetner, G. Requena, A. Stark, C. Poletti, In-Situ Synchrotron X-Ray Diffraction of Ti-6Al-4V During Thermomechanical Treatment in the Beta Field, Metals (Basel). 9 (2019) 862. https://doi.org/10.3390/met9080862.
[11] F. Warchomicka, C. Poletti, M. Stockinger, Study of the hot deformation behaviour in Ti 5Al–5Mo–5V–3Cr–1Zr, Mater. Sci. Eng. A. 528 (2011) 8277–8285. https://doi.org/10.1016/j.msea.2011.07.068
[12] M. Dikovits, C. Poletti, F. Warchomicka, Deformation Mechanisms in the Near-ß Titanium Alloy Ti-55531, Metall. Mater. Trans. A. 45 (2014) 1586–1596. https://doi.org/10.1007/s11661-013-2073-4.
[13] C. Poletti, L. Germain, F. Warchomicka, M. Dikovits, S. Mitsche, Unified description of the softening behavior of beta-metastable and alpha+beta titanium alloys during hot deformation, Mater. Sci. Eng. A. 651 (2016) 280–290. https://doi.org/10.1016/j.msea.2015.10.109.
[14] R.H. Buzolin, D. Canelo-Yubero, F. Warchomicka, M. Lasnik, A. Krumphals, M.C. Poletti, Refinement of the Ti-17 microstructure after hot deformation: Coupled mesoscale model, Mater. Sci. Eng. A. (2020) 140268. https://doi.org/https://doi.org/10.1016/j.msea.2020.140268.
[15] R.H. Buzolin, M. Lasnik, A. Krumphals, M.C. Poletti, Hot deformation and dynamic a globularization of a Ti-17 alloy: Consistent physical model, Mater. Des. 197 (2021) 109266. https://doi.org/https://doi.org/10.1016/j.matdes.2020.109266
[16] R.H. Buzolin, M. Lasnik, A. Krumphals, M.C. Poletti, A dislocation-based model for the microstructure evolution and the flow stress of a Ti5553 alloy, Int. J. Plast. 136 (2021). https://doi.org/10.1016/j.ijplas.2020.102862
[17] F. Miller Branco Ferraz, ., A comprehensive mean-field approach to simulate the microstructure during the hot forming of Ti-17. Materials Science & Engineering A 903 (2024) 146645-https://doi.org/10.1016/j.msea.2024.146645
[18] E. Shahryari et al., “Heterogeneous dynamic restoration of Ti–15Mo alloy during hot compression” Journal of Materials Research and Technology 33 (2024) 7656–7667 https://doi.org/10.1016/j.jmrt.2024.11.089
[19] Miller Branco Ferraz F., Buzolin R.H., Warchomicka F., Terrazas-Monje T., Ebenbauer S., Leitner T., Krumphals A., Poletti M.C., Effects of recovery and phase transformation on the recrystallization kinetics of Ti-6Al-4V during ß-processing, 2025, Mater. Sci. Eng. A, 922, 147628. DOI: 10.1016/j.msea.2024.147628.