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Abstract: The paper presents a study of deformation in open dies of the aluminum alloy AIMgSi0.5. A part of
the research focused on modeling the deformation force during the process is provided. The investigation was
conducted according to an experimental plan, adopting a full multi-factorial orthogonal plan with repetition
at the central point. The input factors were the geometric parameters of the die and the workpiece, as well
as the temperature. Deformation forces were recorded at each point of the plan, and modeling was
performed. The modeling was carried out in MATLAB using a Feedforward Neural Network (FNN), with the
Deep Learning Toolbox. The obtained model values show a high degree of correlation with the experimentally
measured deformation forces.
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1. INTRODUCTION open-die forging — stands out due to its
complexity [1,2].

The main reason for the widespread use of
open-die forging lies in its ability to produce
workpieces of various shapes with favorable
mechanical properties. This is achieved through
a favorable stress state within the workpiece
during processing, particularly in the final stage,
where compressive stress components
dominate. On the other hand, the development
of materials and tooling technologies, as well as
the ability to apply the process at high
temperatures and deformation rates, are

In the metal processing industry, production
conditions have recently changed and become
increasingly demanding. This is reflected in the
need to produce metal components with
minimal consumption of materials, energy, and
production time. These requirements are
driven by global trends characterized by energy
and raw material crises. This is particularly
evident in metal forming processes, due to
their extensive industrial application. Within
metal forming, bulk forming — especially in
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additional reasons for the broad application of
open-die forming [2,3,4].

For the cost-effective design of bulk forming
in open dies, it is essential to understand all
relevant parameters that influence the forming
process, in order to determine the key
mechanical process parameters such as
forming force. For this purpose, engineering
methods are used, as well as numerical
modeling techniques, such as the Finite
Element Method (FEM), through the use of
advanced software packages. In addition,
modeling results obtained by other methods
can also be utilized. By applying such model-
based results to specific forming cases, it is
possible to avoid complex numerical
simulations or to use them for validation
purposes [5,6].

This paper presents a modeling approach
based on Artificial Intelligence (Al), using
Artificial Neural Networks (ANN), for bulk
forming in open dies. This method is well-suited
for modeling complex nonlinear relationships,
where conventional methods are often
insufficiently effective [7].

2. EXPERIMENTAL RESEARCH

The bulk forming process in open dies was
investigated for a family of stepped
axisymmetric parts. Two height levels were
adopted on the upper side and one height level
on the lower side of the die parting plane
(Figure 1.) [6].
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Figure 1. Stepped axisymmetric part
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The following zones exist in the meridional
cross-section of the workpiece:

1. bottom die zone (Ho),

2. flange zone (hv),

3. first level of the upper die zone (H1) and
4. second level of the upper die zone (H>).

The research is conducted under laboratory
conditions, adjusted to closely resemble real
(production) conditions present in an actual
industrial  environment. The following
conditions for investigating the deformation
force are adopted:

1. The tested material is the aluminum
alloy AIMgSi0.5, which is very commonly used
in bulk forming processes, especially in
extrusion and open-die forging. The chemical
composition of the experimental material is
given in Table 1.

Table 1. Chemical Composition of the Material

Fe% Si% Ti% | Cu% | Zn%

0.207 | 0.477 | 0.01 0.09 | 0.068
AlMgSi0,5

V% Cr% | Mn% | Mg% Ni%

0.004 | 0.01 0.1 | 0.493 | 0.02
2. The testing is conducted at the hot

working temperatures of the mentioned alloy,
i.e., within the range t=(420+460) °C.

3. The deformation is performed at a
constant deformation rate: v=2 mm/s.

4. The process is carried out with
lubrication using graphite grease, which is also
applied under production conditions.

2.3 Experimental plan

The experimental plan is based on
preliminary research, and the input factors
have been adopted according to which the
dependence of the working force will be
determined.

A full multi-factor orthogonal experimental
plan with factors varied at two levels is
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adopted, including four repetitions at the
central point of the plan (no = 4).

The input variables (independent variables —
factors) include the geometric factors of the die
(Figure 1.) and the workpiece, as well as the
working temperature. The input factors
considered are:

The geometric factors of the die, expressed
as dimensionless ratios of characteristic die
dimensions to the base diameter of the die
D, to ensure generality of the results:
X1=H1/D, X2=H2/D, X3=D1/D

(1)

where:
Hi - height of the first level of the upper die,
H; - height of the sec. level of the upper die,
D1 - diameter of the sec. lev. of the upper
die,
D - base diameter of the die.
The geometric factor of the workpiece is the
ratio of the initial diameter of the
workpiece to the base diameter of the die:
Xa=do/D (2)

where:
do - workpiece diameter.
The temperature factor is considered in hot
working and represents the working
temperature in degrees Celsius:

Xs=T [°C] (3)
The number of points for k factors with no
repetitions at the central point is:

N=2k+n0.

(4)
2.4 Experimental plan matrix

The experimental plan matrix for the full 5-
factor plan is given in Table 2.

Table 2. Plan matrix

Input factors | Output
Plan: Points
X1|X2[Xs5]-..| Xs
1 A-1]-1...0-1 Y4
25 23] 22 2 +1[-1]-1]...]-1]  Ya
3 AL Ys

126

4 1+ 1)1 Ya
5 1111+ -1 Ys
6 11|+ Ye
7 A1+ Y
8 [+ Ys
25=32 |+1[+1[+1[...[+1] VY
2%+1=33(0|0[0...[]0| Ya3
2%+2=34(0|0|0/.../|0| Yas
Central points
2%+3=35(0|0|0[...[]0| Yas
2%+4=36(0|0|0[.../0| Y

The adopted levels of variation of the
input factors are given in Table 3.

Table 3. Levels of Variation of Input Factors in the
Experimental plan

Input lower Middle Upper
factors level level level
X4 0.175 0.250 0.357
X2 0.150 0.250 0.417
X3 0.417 0.500 0.600
Xa 0.757 0.839 0.908
Xs [°C] 420 440 460

The following values of other dimensions of
the workpiece and the die are adopted (Figure
1.):
e Base diameter of the die: D=40 mm;
Height of the flange: hy=1 mm;
Diameter of the flange: dv=50 mm;

Height of the bottom die: Hp=10 mm.

The heights of the workpieces are
determined based on the dimensions of the die
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and the diameter of the workpiece, in order to
enable variations of the input factors (Table 3.),
and the number of workpieces is determined
according to the points of the plan matrix
(Table 4).

Table 4. Dimensions and Numbers of Workpieces

Workpiece i
. p Height NG of
diematar No Ko
workpieces
do [mm] he [mm] :
1 34.42 2
2 36.33 2
3 37.07 2
4 42.18 2
30.28
5 46.21 2
6 48.12 2
7 48.86 2
8 53.97 2
33.56 9 33.94 4
1 23.95 2
2 25.28 2
3 25.80 2
4 29.35 2
36.30
5 32.16 2
6 33.49 2
7 34.00 2
8 37.56 2

2.5 Experimental Equipment

For deformation, a static testing machine
with a hydraulic drive, type R100, of Russian
manufacture was used, capable of performing
tensile and compressive tests (Figure 2.). The
maximum load capacity of the press is 1 MN,
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and the maximum deformation rate is v=2
mm/s.

Measurements during the stated
experimental investigations were conducted
using the measurement system shown in Figure
3.
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Figure 2. Hydraulic press: 10 — inductive
displacement sensor, 11 — force sensors.
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Figure 3. Information measurement system

Strain gauge sensors of type HBM
6/120LY11, connected in a full Wheatstone
bridge, were used as force sensors, while an
inductive displacement sensor of type HBM W
200K was used for displacement measurement.
The signals from the sensor units were
amplified using a digital six-channel measuring
bridge of type HBM KWS.637.D4. The analog
output signal from the bridge was transmitted
via a transmission unit to an AD/DA card of type
DT 2801-A, converted to digital form, and
stored on a personal computer with installed
GLOBAL-LAB data acquisition software.
Temperature control was performed using a
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digital thermometer for measuring the
temperature on the surface of hard materials,
type DT IM Dalmacija. The thermometer uses a
tactile probe based on a thermocouple.

2.6 Measurement of deformation force
during the deformation process

As part of the experimental research,
measurements of the deformation force during
bulk deformation in open dies were performed
according to the experimental plan. The order
of execution of the experimental points from
the plan matrix was randomized. Lubrication
was done by manually applying a layer of
graphite grease onto the working surfaces of
the tools. To achieve isothermal deformation,
the deformation tools were heated together
with the workpieces.

After heating in the furnace, the
deformation tool assembly, together with the
workpiece, was placed on the press. After
starting the information measurement system
for force measurement as a function of
displacement, the press was put into operation.
The deformation of the workpieces was carried
out in a single stroke, and the process was
stopped upon reaching the final dimensions.
The final dimensions were ensured by a steel
ring whose thickness corresponds to the
required flange height.

400
350

=300
pa
250

Lower level of
factors ’

0 5 15 20

10
Stroke: z[mm]
Figure 4. Forces for the lower, middle, and upper
factor levels

Upon stopping the press stroke, the
measurement process with the information
measurement system was also stopped, and
the force signals from the strain gauge sensors
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on both supporting columns of the upper press
table, as well as from the inductive
displacement sensor, were recorded on the
computer's hard drive.

In this way, the force variations as a function
of displacement were obtained at all points of
the experimental plan. Figure 4. shows the
deformation forces for the lower, middle, and
upper levels of variation of the input factors.

3. MODELING OF DEFORMATION FORCE
USING NEURAL NETWORKS

The modeling of the deformation process in
open dies was carried out in Matlab version
24.2.0. The Deep Learning Toolbox was used for
fitting via a Feedforward Neural Network
(FNN), which represents a standard multilayer
network. Launching this application activates a
very efficient GUI where modeling can be
performed in a relatively simple way.

First, it is necessary to prepare the input and
output data. The output data must be in the
form of a matrix with a certain number of rows
and columns equal to the number of points in
the experimental plan. It was chosen to be a
matrix of dimension Y[101,36]. Since the
displacement differs for individual points of the
plan, displacement normalization must be
performed. This is achieved using the
expression:

(5)

This ensures that the value of the
normalized displacement ranges from 0 at the
start of deformation to 1, which corresponds to
the maximum displacement value at the end of
the deformation process. For each value of the
normalized displacement, the corresponding
force values for individual points of the plan are
entered, thus obtaining a normalized matrix of
output values.

The input data are prepared to have 5 rows,
corresponding to the number of input factors,
and 36 columns, corresponding to the number
of points in the plan matrix, so the matrix has
dimensions X[5,36]. Each column contains the

Znorm=(Z‘Zmin)/(2max‘2min)
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values of the input factors for a specific point of
the plan.

After entering the data, the structure of the
neural network is selected (Figure 5.).

The structure of the neural network for
modeling the deformation force consists of:

1. Input layer with 5 input features,
corresponding to the input factors,

2. Hidden layer with 10 neurons, using a
sigmoid activation function (wave-like
symbol),

3. Output layer with 100 neurons, using a

linear activation function (straight-line
symbol).
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Figure 5. Neural network structure

So, this is a classic "function fitting"
regression network, which is used to learn the
relationship between multiple inputs and a
complex vector output. The neural network is
created using the command:

net = fitnet(hiddenLayerSize,trainFcn); (6)

and trained using the command:
[net,tr] = train(net,x,t);

(7)

This vyields a function that models the
deformation force in all points of the
experimental plan of the form:

y = net(x); (8)

This applies throughout the entire hypercube
space, and likely within a certain domain
outside of that space as well.
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Figure 6. shows the modeled values of the
deformation force for the lower, middle, and
upper levels of the input factors. Figures 7.
through 9. present comparative values of the
experimentally obtained deformation force and
those modeled using neural networks.

Lower level of factors
Middle level of factors “
300 - Upper level of factors | ||
250
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[
100 | 7
/// /.
50 - 7 /
() — :
0 0.2 0.4 0.6 0.8 1
Normalized stroke
Figure 6. Modeled force values for the lower,
middle, and upper factor levels
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Figure 7. Experimental and modeled force values
for the lower factor level
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Figure 8. Experimental and modeled force values
for the upper factor level



40™|CPES

60t Anniversary of the Association of Production Engineering of Serbia

350

Experimental
Neural networks

300 - f

|

250

200 - /A

Force: F [kN]

150 /

y
100 - 74

0.4 0.6 0.8 1
Normalized stroke

Figure 9. Experimental and modeled force values
for the middle factor level
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4. ANALYSIS OF RESULTS

From the figures, a good match between the
experimental and modeled values can be
concluded. The Deep Learning Toolbox enables
analysis of modeling performance.

Figure 10. shows the results of training the
neural network in MATLAB for modeling the
deformation force in open dies in the form of
the standard plotregression graph that
MATLAB generates for assessing the quality of
the network. The figure shows a high degree of
model correlation (>95), which means the
model closely follows the training data,
generalizes the problem well, and is not
overfitted.

Training: R=0.99873 Validation: R=0.95336

500 500

O  Data
Fit
v = T

IS
o
S

N @
=3 S
S S
8
=}
S

=}
S

Output ~= 1*Target + 0.047
Output ~= 1.3*Target + 5.8

o
o

o

100 200 300

Target

400

Test: R=0.96258

All: R=0.97682

500 500

O Data
Fit c,

oy=T o

O  Data [e]
Fit
R

&

Output ~= 1*Target + 4.6
o
Output ~= 1*Target + 0.55

] 100 200 300

Target

400 500 0 100 200 300

Target

400 500

Figure 10. Neural network training results
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It can be stated that a very successful model
was obtained using a neural network for the
compression deformation force in open dies.
The network can be successfully used to predict
compression results without the need for
complex simulations, such as the finite element
method.

5. CONCLUSION

Neural networks can be successfully used for
modeling the deformation force during bulk
deformation in open dies. This is demonstrated
in the paper through the example of modeling
the deformation force in the deformation of
the aluminum alloy AIMgSi0.5 in open dies.

Deformation forces were recorded at each
point of the full multi-factor orthogonal plan
with repetition at the central point. The input
factors adopted were geometric factors of the
die and billet, given as relative ratios, and the
hot working temperature. The modeling of the
dependence of the deformation force on the
working stroke was performed using a
Feedforward Neural Network (FNN) in Matlab,
utilizing the Deep Learning Toolbox.

A good agreement between experimental
and modeled values was obtained, with a high
degree of model correlation (>95), indicating
that the modeled values are adequate. Thus, it
can be concluded that the network can be
successfully used to predict compression
results under given conditions, without the
need for complex numerical simulations.
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