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Abstract: The paper presents a study of deformation in open dies of the aluminum alloy AlMgSi0.5. A part of 
the research focused on modeling the deformation force during the process is provided. The investigation was 
conducted according to an experimental plan, adopting a full multi-factorial orthogonal plan with repetition 
at the central point. The input factors were the geometric parameters of the die and the workpiece, as well 
as the temperature. Deformation forces were recorded at each point of the plan, and modeling was 
performed. The modeling was carried out in MATLAB using a Feedforward Neural Network (FNN), with the 
Deep Learning Toolbox. The obtained model values show a high degree of correlation with the experimentally 
measured deformation forces. 
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1. INTRODUCTION 
 

In the metal processing industry, production 
conditions have recently changed and become 
increasingly demanding. This is reflected in the 
need to produce metal components with 
minimal consumption of materials, energy, and 
production time. These requirements are 
driven by global trends characterized by energy 
and raw material crises. This is particularly 
evident in metal forming processes, due to 
their extensive industrial application. Within 
metal forming, bulk forming — especially in 

open-die forging — stands out due to its 
complexity [1,2]. 

The main reason for the widespread use of 
open-die forging lies in its ability to produce 
workpieces of various shapes with favorable 
mechanical properties. This is achieved through 
a favorable stress state within the workpiece 
during processing, particularly in the final stage, 
where compressive stress components 
dominate. On the other hand, the development 
of materials and tooling technologies, as well as 
the ability to apply the process at high 
temperatures and deformation rates, are 
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additional reasons for the broad application of 
open-die forming [2,3,4]. 

For the cost-effective design of bulk forming 
in open dies, it is essential to understand all 
relevant parameters that influence the forming 
process, in order to determine the key 
mechanical process parameters such as 
forming force. For this purpose, engineering 
methods are used, as well as numerical 
modeling techniques, such as the Finite 
Element Method (FEM), through the use of 
advanced software packages. In addition, 
modeling results obtained by other methods 
can also be utilized. By applying such model-
based results to specific forming cases, it is 
possible to avoid complex numerical 
simulations or to use them for validation 
purposes [5,6]. 

This paper presents a modeling approach 
based on Artificial Intelligence (AI), using 
Artificial Neural Networks (ANN), for bulk 
forming in open dies. This method is well-suited 
for modeling complex nonlinear relationships, 
where conventional methods are often 
insufficiently effective [7]. 

 
 

2. EXPERIMENTAL RESEARCH 
 

The bulk forming process in open dies was 
investigated for a family of stepped 
axisymmetric parts. Two height levels were 
adopted on the upper side and one height level 
on the lower side of the die parting plane 
(Figure 1.) [6].  
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Figure 1. Stepped axisymmetric part 

 The following zones exist in the meridional 
cross-section of the workpiece: 

1. bottom die zone (H0), 
2. flange zone (hv), 
3. first level of the upper die zone (H1) and 
4. second level of the upper die zone (H2). 
The research is conducted under laboratory 

conditions, adjusted to closely resemble real 
(production) conditions present in an actual 
industrial environment. The following 
conditions for investigating the deformation 
force are adopted: 

1. The tested material is the aluminum 
alloy AlMgSi0.5, which is very commonly used 
in bulk forming processes, especially in 
extrusion and open-die forging. The chemical 
composition of the experimental material is 
given in Table 1. 

Table 1. Chemical Composition of the Material 

AlMgSi0,5 

Fe% Si% Ti% Cu% Zn% 

0.207 0.477 0.01 0.09 0.068 

V% Cr% Mn% Mg% Ni% 

0.004 0.01 0.1 0.493 0.02 

 
2. The testing is conducted at the hot 

working temperatures of the mentioned alloy, 
i.e., within the range t=(420÷460) ⁰C. 

3. The deformation is performed at a 
constant deformation rate:  v=2 mm/s. 

4. The process is carried out with 
lubrication using graphite grease, which is also 
applied under production conditions. 
 

2.3 Experimental plan 
 

The experimental plan is based on 
preliminary research, and the input factors 
have been adopted according to which the 
dependence of the working force will be 
determined. 

A full multi-factor orthogonal experimental 
plan with factors varied at two levels is 
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adopted, including four repetitions at the 
central point of the plan (n₀ = 4).  

The input variables (independent variables – 
factors) include the geometric factors of the die 
(Figure 1.) and the workpiece, as well as the 
working temperature. The input factors 
considered are: 

• The geometric factors of the die, expressed 
as dimensionless ratios of characteristic die 
dimensions to the base diameter of the die 
D, to ensure generality of the results: 

 X1=H1/D, X2=H2/D, X3=D1/D (1) 

where: 
H1 - height of the first level of the upper die, 
H2 - height of the sec. level of the upper die, 
D1 - diameter of the sec. lev. of the upper 

die,  
D - base diameter of the die. 

• The geometric factor of the workpiece is the 
ratio of the initial diameter of the 
workpiece to the base diameter of the die: 

 X4=d0/D  (2) 

where: 
d0 - workpiece diameter. 

• The temperature factor is considered in hot 
working and represents the working 
temperature in degrees Celsius: 

 X5=T [°C] (3) 
The number of points for k factors with n₀ 

repetitions at the central point is: 
 N=2k+n0. (4) 

 
2.4 Experimental plan matrix 

 
The experimental plan matrix for the full 5-

factor plan is given in Table 2.  

Table 2. Plan matrix 

Plan: Points 
Input factors Output 

X1 X2 X3 ... X5  

25 ... 23 22 

1 -1 -1 -1 ... -1 Y1 

2 +1 -1 -1 ... -1 Y2 

3 -1 +1 -1 ... -1 Y3 

4 +1 +1 -1 ... -1 Y4 

 

5 -1 -1 +1 ... -1 Y5 

6 +1 -1 +1 ... -1 Y6 

7 -1 +1 +1 ... -1 Y7 

8 +1 +1 +1 ... -1 Y8 

                

   25=32 +1 +1 +1 ... +1 Y32 

Central points 

2k+1=33 0 0 0 ... 0 Y33 

2k+2=34 0 0 0 ... 0 Y34 

2k+3=35 0 0 0 ... 0 Y35 

2k+4=36 0 0 0 ... 0 Y36 

 
The adopted levels of variation of the 

input factors are given in Table 3. 

Table 3. Levels of Variation of Input Factors in the 
Experimental plan 

Input 
factors 

lower 
level 

Middle  
level 

Upper  
level 

X1 0.175 0.250 0.357 

X2 0.150 0.250 0.417 

X3 0.417 0.500 0.600 

X4 0.757 0.839 0.908 

X5 [C] 420 440 460 

 
The following values of other dimensions of 

the workpiece and the die are adopted (Figure 
1.): 

• Base diameter of the die: D=40 mm; 

• Height of the flange: hv= 1 mm; 

• Diameter of the flange: dv=50 mm; 

• Height of the bottom die: H0=10 mm. 
 
The heights of the workpieces are 

determined based on the dimensions of the die 
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and the diameter of the workpiece, in order to 
enable variations of the input factors (Table 3.), 
and the number of workpieces is determined 
according to the points of the plan matrix 
(Table 4). 

Table 4. Dimensions and Numbers of Workpieces 

Workpiece 
diematar  
d0 [mm] 

No 
Height 

h0 mm 

No of 
workpieces 

30.28 

1 34.42 2 

2 36.33 2 

3 37.07 2 

4 42.18 2 

5 46.21 2 

6 48.12 2 

7 48.86 2 

8 53.97 2 

33.56 9 33.94 4 

36.30 

1 23.95 2 

2 25.28 2 

3 25.80 2 

4 29.35 2 

5 32.16 2 

6 33.49 2 

7 34.00 2 

8 37.56 2 

 
 

2.5 Experimental Equipment 
 
For deformation, a static testing machine 

with a hydraulic drive, type R100, of Russian 
manufacture was used, capable of performing 
tensile and compressive tests (Figure 2.). The 
maximum load capacity of the press is 1 MN, 

and the maximum deformation rate is v=2 
mm/s. 

Measurements during the stated 
experimental investigations were conducted 
using the measurement system shown in Figure 
3. 
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Figure 2. Hydraulic press: 10 – inductive 
displacement sensor, 11 – force sensors. 

 

 

Figure 3. Information measurement system 

Strain gauge sensors of type HBM 
6/120LY11, connected in a full Wheatstone 
bridge, were used as force sensors, while an 
inductive displacement sensor of type HBM W 
200K was used for displacement measurement. 
The signals from the sensor units were 
amplified using a digital six-channel measuring 
bridge of type HBM KWS.637.D4. The analog 
output signal from the bridge was transmitted 
via a transmission unit to an AD/DA card of type 
DT 2801-A, converted to digital form, and 
stored on a personal computer with installed 
GLOBAL-LAB data acquisition software. 
Temperature control was performed using a 
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digital thermometer for measuring the 
temperature on the surface of hard materials, 
type DT IM Dalmacija. The thermometer uses a 
tactile probe based on a thermocouple. 

 
2.6 Measurement of deformation force 

during the deformation process 
 
As part of the experimental research, 

measurements of the deformation force during 
bulk deformation in open dies were performed 
according to the experimental plan. The order 
of execution of the experimental points from 
the plan matrix was randomized. Lubrication 
was done by manually applying a layer of 
graphite grease onto the working surfaces of 
the tools. To achieve isothermal deformation, 
the deformation tools were heated together 
with the workpieces. 

After heating in the furnace, the 
deformation tool assembly, together with the 
workpiece, was placed on the press. After 
starting the information measurement system 
for force measurement as a function of 
displacement, the press was put into operation. 
The deformation of the workpieces was carried 
out in a single stroke, and the process was 
stopped upon reaching the final dimensions. 
The final dimensions were ensured by a steel 
ring whose thickness corresponds to the 
required flange height. 

 
Figure 4. Forces for the lower, middle, and upper 

factor levels 

Upon stopping the press stroke, the 
measurement process with the information 
measurement system was also stopped, and 
the force signals from the strain gauge sensors 

on both supporting columns of the upper press 
table, as well as from the inductive 
displacement sensor, were recorded on the 
computer's hard drive. 

In this way, the force variations as a function 
of displacement were obtained at all points of 
the experimental plan. Figure 4. shows the 
deformation forces for the lower, middle, and 
upper levels of variation of the input factors. 

 
3. MODELING OF DEFORMATION FORCE 

USING NEURAL NETWORKS 
 
The modeling of the deformation process in 

open dies was carried out in Matlab version 
24.2.0. The Deep Learning Toolbox was used for 
fitting via a Feedforward Neural Network 
(FNN), which represents a standard multilayer 
network. Launching this application activates a 
very efficient GUI where modeling can be 
performed in a relatively simple way. 

First, it is necessary to prepare the input and 
output data. The output data must be in the 
form of a matrix with a certain number of rows 
and columns equal to the number of points in 
the experimental plan. It was chosen to be a 
matrix of dimension Y[101,36]. Since the 
displacement differs for individual points of the 
plan, displacement normalization must be 
performed. This is achieved using the 
expression: 

 Znorm=(z-zmin)/(zmax-zmin) (5) 

This ensures that the value of the 
normalized displacement ranges from 0 at the 
start of deformation to 1, which corresponds to 
the maximum displacement value at the end of 
the deformation process. For each value of the 
normalized displacement, the corresponding 
force values for individual points of the plan are 
entered, thus obtaining a normalized matrix of 
output values. 

The input data are prepared to have 5 rows, 
corresponding to the number of input factors, 
and 36 columns, corresponding to the number 
of points in the plan matrix, so the matrix has 
dimensions X[5,36]. Each column contains the 
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values of the input factors for a specific point of 
the plan. 

After entering the data, the structure of the 
neural network is selected (Figure 5.). 

The structure of the neural network for 
modeling the deformation force consists of: 
1. Input layer with 5 input features, 

corresponding to the input factors, 
2. Hidden layer with 10 neurons, using a 

sigmoid activation function (wave-like 
symbol), 

3. Output layer with 100 neurons, using a 
linear activation function (straight-line 
symbol). 

 

 
Figure 5. Neural network structure 

So, this is a classic "function fitting" 
regression network, which is used to learn the 
relationship between multiple inputs and a 
complex vector output. The neural network is 
created using the command:  
 net = fitnet(hiddenLayerSize,trainFcn); (6) 

and trained using the command: 
 [net,tr] = train(net,x,t); (7) 

This yields a function that models the 
deformation force in all points of the 
experimental plan of the form: 
 y = net(x); (8) 

This applies throughout the entire hypercube 
space, and likely within a certain domain 
outside of that space as well. 

Figure 6. shows the modeled values of the 
deformation force for the lower, middle, and 
upper levels of the input factors. Figures 7. 
through 9. present comparative values of the 
experimentally obtained deformation force and 
those modeled using neural networks. 
 

 
Figure 6. Modeled force values for the lower, 

middle, and upper factor levels 

 
Figure 7. Experimental and modeled force values 

for the lower factor level 

 
Figure 8. Experimental and modeled force values 

for the upper factor level 
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Figure 9. Experimental and modeled force values 

for the middle factor level 

 
4. ANALYSIS OF RESULTS 

 
From the figures, a good match between the 

experimental and modeled values can be 
concluded. The Deep Learning Toolbox enables 
analysis of modeling performance. 

Figure 10. shows the results of training the 
neural network in MATLAB for modeling the 
deformation force in open dies in the form of 
the standard plotregression graph that 
MATLAB generates for assessing the quality of 
the network. The figure shows a high degree of 
model correlation (>95), which means the 
model closely follows the training data, 
generalizes the problem well, and is not 
overfitted. 

 
Figure 10. Neural network training results 

It can be stated that a very successful model 
was obtained using a neural network for the 
compression deformation force in open dies. 
The network can be successfully used to predict 
compression results without the need for 
complex simulations, such as the finite element 
method. 

 
5. CONCLUSION 

 
Neural networks can be successfully used for 

modeling the deformation force during bulk 
deformation in open dies. This is demonstrated 
in the paper through the example of modeling 
the deformation force in the deformation of 
the aluminum alloy AlMgSi0.5 in open dies. 

Deformation forces were recorded at each 
point of the full multi-factor orthogonal plan 
with repetition at the central point. The input 
factors adopted were geometric factors of the 
die and billet, given as relative ratios, and the 
hot working temperature. The modeling of the 
dependence of the deformation force on the 
working stroke was performed using a 
Feedforward Neural Network (FNN) in Matlab, 
utilizing the Deep Learning Toolbox. 

A good agreement between experimental 
and modeled values was obtained, with a high 
degree of model correlation (>95), indicating 
that the modeled values are adequate. Thus, it 
can be concluded that the network can be 
successfully used to predict compression 
results under given conditions, without the 
need for complex numerical simulations. 

 
REFERENCES 

[1] F. Chao, L. Weike, C. Xianhui, D. Yunlai, W. Jun, 
X. Yi: A Study on Forging Process of New 
Aluminum Alloy, Journal of Physics Conference 
Series, Vol. 2194, No. 1:012016, pp. 1-6, 2022. 

[2] E. Kavehand all: Severe plastic deformation for 
producing superfunctional ultrafine-grained 
and heterostructured materials: An 
interdisciplinary review, Journal of Alloys and 
Compounds, Vol. 1002, No. 174667, 2024. 

[3] A. Evstifeev, A. Mavlyutov, A. Voropaev, D. 
Volosevich: Optimization of Strength and 
Plasticity in Layered Aluminum Composites 



40th ICPES 60th Anniversary of the Association of Production Engineering of Serbia 

 

131 

Through High-Pressure Torsion Treatment, 
Metals, Vol 14, No. 12, 2024. 

[4] J. Lv, Z. Jing-Hua, V. A. Yardley, S. Zhusheng, L. 
Jianguo: A Review of Microstructural Evolution 
and Modelling of Aluminium Alloys under Hot 
Forming Conditions, Metals, Vol. 10, No. 11 
2020. 

[5] P. Thi-Ha-Linh, L. The-Thanh, N. Duc-Toan: A 
Study Utilizing Numerical Simulation and 
Experimental Analysis to Predict and Optimize 
Flange-Forming Force in Open-Die Forging of 
C45 Billet Tubes, Applied Sciences, Vol. 13, No. 
16, 2023.  

[6] M. Janjić: (2008) Stress Deformation Parameter 
Investigation in the Processes of the Bulk Metal 
Forming, Monograph, Faculty of Mechanicall 
Engineering, University of Montenegro, 
Podgorica, 2008. 

[7] A. Jenab, A. Karimi Taheri, and K. Jenab: The Use 
of ANN to Predict the Hot Deformation 
Behavior of AA7075 at Low Strain Rates, Journal 
of Materials Engineering and Performance, Vol. 
22, No. 3, 2013. 

 
 


