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Abstract: Modern energy production systems, particularly in the district heating sector, face challenges
caused by irregularly sampled time series resulting from asynchronous measurements, missing values, and
variable operating conditions. These issues complicate the application of traditional forecasting methods. In
this context, interpolation procedures play an important role, where the error depends on the curvature of
the function and indicates the extent to which a polynomial of a given degree can approximate the observed
signal, which is particularly important in irregular time series. In this way, a theoretical foundation is provided
for understanding the limitations of data regularization and the irregularity of time series. The proposed work
combines the theoretical analysis of interpolation with advanced time series processing and machine learning
methods in order to support reliable forecasting, process optimization, and decision-making. The results
highlight how theoretical insights into interpolation errors can guide the design of explainable and
transparent forecasting models, thereby advancing smart energy production strategies aligned with Industry
5.0.

Keywords: irregular time series, polynomial interpolation error, artificial intelligence, explainable artificial
intelligence, energy consumption forecasting, industry 5.0, smart energy production
transparency hinders trust and limits their

1. INTRODUCTION practical application in critical infrastructure.
These challenges further emphasize the need

Energy systems in transition, particularly for transparent and explainable models, in
district heating  systems, rely on line with the principles of Industry 5.0, which
heterogeneous SCADA data streams that are are based on human-centricity, resilience, and
often irregularly  sampled due to sustainability[1,2]. Recent reviews of XAl
asynchronous measurements, missing approaches in the energy sector highlight
readings, and variable operating conditions. issues of traceability, accountability, and
Although modern machine certifiability, offering guidelines and principles
for the implementation of explainable

learning and deep learning models achieve solutions in areas such as demand and
high predictive accuracy, their lack of production forecasting, as well as grid
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management [3-5]. In the context of irregular
time series, interpolation plays a crucial role
in filling gaps and regularizing data. However,
the accuracy of such procedures depends on
the local curvature of the function, which
directly affects the interpolation error and the
limits of polynomial approximation of a given
order [6]. At the same time, the application of
XAl techniques, particularly SHAP and LIME,
has been gaining increasing attention, as they
enable deeper insights into the functioning of
predictive models and the importance of
individual features. At the household level,
research confirms that XAl contributes to the
reliable identification of consumption
patterns (both current and historical) and the
validation of model architectures using
standard performance metrics (R?, RMSE,
MAE) [7]. Nevertheless, model explainability
has no real value unless it is grounded in high-
quality data and methodologically consistent

approaches. Inadequate regularization or
excessive  interpolation may generate
convincing but misleading model

interpretations. For this reason, modern XAl
frameworks emphasize the necessity of
aligning technical solutions with
organizational and societal requirements,
including transparency, accountability, and
security—the core principles of Industry 5.0.

Building on these challenges, this paper
makes threefold contributions: () it links the
theoretical framework of interpolation errors,
derived from function curvature, with
preprocessing procedures for irregular time
series, (ll) it integrates these insights into a
modeling pipeline that seeks to preserve the
authenticity of real system dynamics, and (lll)
it extends this pipeline with XAl analyses
(SHAP/LIME) that enable the interpretation of
predictions in the context of energy variables
and operational decisions. In this way, the
study contributes to the development of
transparent and explainable predictive
models that enhance trust, usability, and
sustainability in line with the Industry 5.0
paradigm.
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2. THEORETICAL FOUNDATIONS OF
INTERPOLATION

The theoretical analysis of interpolation
errors provides not only a mathematical
framework but also a practical tool for
processing consumption data and forecasting
load demand in district heating systems. The
curvature of a function, expressed through
higher-order derivatives, together with the
distribution of interpolation nodes and
multidimensional data processing, directly
determines the limits of prediction accuracy.
In the context of energy systems, and
particularly  district heating  networks,
interpolation techniques are applied during
the processing of SCADA data, where missing
or irregularly sampled values frequently
occur.

A classical result states that if

f € C™a,b]

the interpolation
pn, (x) satisfies the relation:

f&) —p(x) =

which indicates that the error magnitude
depends both on the higher-order derivative
of the function and on the choice of
interpolation nodes [8,9]. This formula is
analogous to the Taylor expansion, but differs
in that the polynomial is constructed from
function values at several distinct points,
making it particularly suitable for time series
characterized by discreteness and irregular
sampling. The error f interpolation is often
smaller if we increase the number of nodes.
But, there are some counterexamples.

(1)

polynomial

£ (&)
Tn!x [T (x — x;) (2)

2.1 Example 1. Consider the Runge function:

f(x) =

, X

€ [-5,5]. 3)
In contrast to our expectations, increasing the
number of nodes especially in the segments
[-5,-3] and [3,5], has the consequence that the
interpolation (blue curve) gives significant
error. Even more,

1+ x2



40™|CPES

60" Anniversary of the Association of Production Engineering of Serbia

_max [If(x) = Qn(¥)ll > 0, n—>o0  (4)

On the Figure 1, the divergence is obvious
for n=10. This example illustrates that
interpolation error may increase despite using
more nodes. This naturally raises the question
of how the choice of interpolation nodes
affects the error. Until now, the discussion has
been based on the assumption that the
interpolation nodes are fixed.

y

A

_\/ -2

Figure 1. lllustration of Runge’s phenomenon

In the entire discussion up to now, it is
assumed that the interpolation nodes are
given.

If this is the case, it would be reasonable to
use this degree of freedom to minimize the
interpolation error.

The distribution of error strongly depends
on the selection of interpolation nodes. For
uniformly distributed nodes, oscillations and
significant growth of error occur near the
interval boundaries, a phenomenon known as
Runge’s phenomenon. In energy applications,
particularly in heat demand analysis, such an
effect may lead to inaccurate forecasts during
periods of sudden outdoor temperature
changes. Therefore, special node
distributions, such as Chebyshev nodes, are
employed to provide a more balanced error
distribution and to minimize the maximum
deviation of the interpolation polynomial
from the actual data [10-12].
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Apart from node selection, the nature of
the underlying function also plays an
important role. Rapid growth of higher-order
derivatives (e.g., sudden changes in heat load)
can significantly increase the interpolation
error, demonstrating that increasing the
number of interpolation points does not
necessarily improve the approximation. This
demonstrates that increasing the number of
interpolation points does not necessarily
improve the approximation and that, in real
district heating operations, a compromise
must be made between complexity and
stability [12].

In such circumstances, the use of spline
functions becomes particularly relevant, as
they enable stable interpolation through local
low-degree polynomials. Unlike global
polynomials, splines ensure smoothness of
the function and continuity of derivatives,

which is especially important in energy
systems where changes in load and
temperature  must remain  physically

consistent. In this way, the risk of oscillations
and error accumulation is reduced, and the
reconstructed data provide a more reliable
basis for modeling heat substations [13,14].

On some real interval [a,b] notice its
partition [P with nodes
P:a=xy<x; < <Xp_1<Xp=Db, (n€N)
Suppose that for a function f(x) are known
values fy = f(xx) (k=10,1,...,n)

The function S;,(x) =Spk(GHEP) s
polynomial spline with degree m and defect k
(1 <k <m) for f(x) if
1) Foreveryi € {1,2,...,n}, and for every x €
(Xi—1,Xi), Sm(X) is a polynomial with degree
at most m;
2)Sp(x) is a part-by-part interpolating
polynomial, i.e. S, (x;) = f; (i=0,1,...,n);
3) Sm(x) is a continuously differentiable
function with its derivatives until order m — k
on [a,b], i.e.
St (x) = S5 ()
(k=1,..,m-k i=1,..,n—-1).
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Figure 2 illustrates the concept of a spline as a
piecewise  polynomial that maintains
smoothness across interval boundaries.

Natural cubic spline approximation for seven data points
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Figure 2. Natural cubic spline interpolation

These insights form the foundation for
subsequent methods in this work that
combine interpolation with machine learning
and explainable artificial intelligence (XAl) to
enhance transparency and reliability in district
heating operations.

3. RELATED WORK

3.1 Data characteristics and
preprocessing of irregular time series

Research focusing on data processing in
district heating systems highlights that SCADA
and smart meters typically provide key
variables such as supply and return water
temperatures, thermal energy, flow, and
outdoor temperature. For example, Cvetkovié
et al. document a publicly available SCADA
dataset in which measurements were
collected at the substation level and
standardized to hourly time steps after
cleaning, resulting in time series without
errors or missing values [15]. Similarly,
Schaffer et al. present a three-year dataset
from 3,021 smart meters, where raw readings
deviated by up to +30 minutes from the full
hour and were therefore subjected to initial
screening, linear interpolation, and
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imputation to obtain a fully equidistant hourly
series [16].

Typical challenges include irregularity and
missing values. In practice, timestamps are
not always aligned due to communication
delays or technical faults, which leads to gaps
in the series. Chatterjee et al. emphasize that
raw smart meter data are often irregularly
spaced and therefore require interpolation
and resampling before being used in
predictive models [17]. In addition, Steindl et
al. point out that the transition from daylight
saving time (DST) to standard time can
produce incorrect measurement order, so it is
recommended to explicitly remove readings
recorded between 02:00-02:59 during this
transition [18].

The proposed preprocessing procedures
form a clear pipeline. In the first stage, data
are checked for inconsistencies, especially
cumulative variables such as energy or flow,
where monotonicity is required (each new
value must be greater than or equal to the
previous one). A similar approach was applied
in studies on fault detection based on smart
meter data [19]. Interpolation and resampling
are then performed—most often linear—in
order to form an equidistant time grid (hourly
or 15-minute). Short gaps up to one hour are
typically filled by linear interpolation, while
longer gaps are usually excluded from analysis
[18]. Afterward, the remaining small fraction
of missing values is imputed using moving-
window methods. Schaffer et al. conducted a
systematic comparison of different
techniques and demonstrated that a
weighted moving average with a 48-hour
symmetric window, combined with scaling
that respects the cumulative trend, yields the
best results for smart meters [16]. Finally,
when measurements are quantized or
truncated at the hourly level (e.g., due to
utility data storage practices), aggregation to
daily values is recommended to reduce
rounding errors and provide a more stable
series for anomaly detection [20].

Beyond classical procedures, the
importance of documenting the entire
process through formal data-curation
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guidelines is emphasized. Stecher et al.
recommend an approach inspired by the
CRISP-DM methodology, adapted to the DHS
domain: defining objectives, understanding
the data, integrating multiple sources (SCADA
and meteorology), and performing systematic
cleaning and annotation.

3.2 Forecasting heat demand in district
heating systems

Conventional approaches to heat demand
forecasting in district heating systems (DHS)
are primarily rule-based, relying heavily on
weather forecasts and, in particular, ambient
temperature. This control strategy, known as
weather  compensation, can provide
acceptable decisions in certain circumstances
but rarely achieves optimality. In practice, this
often results in overheating, observable
through elevated supply line water
temperatures and decreased heat load. While
end-user comfort is usually unaffected, such
inefficiencies lead to increased fuel
consumption and negative environmental
impacts.

Several empirical studies highlight the
progress from conventional to advanced data-
driven models.

Potocnik et al. [21] pioneered the use of
Gaussian Process Regression (GPR) in
Slovenia’s largest DHS, demonstrating that
nonlinear models substantially improve short-
term forecasting accuracy. Building on this,
Zdravkovi¢ et al. [22] proposed a proactive
control strategy based on deep learning,
where different LSTM architectures enabled
more adaptive and responsive system
operation. In a complementary study, Kurek
et al. [23] combined traditional approaches
with fuzzy logic models, adapted to seasonal
variations, to manage Warsaw’s large district
heating network, underlining the potential of
ANNSs in complex urban environments.

The scope of Al applications has been
further expanded in comparative studies.
Runge and Saloux [24] investigated predictive
versus forecasting paradigms, showing that
advanced machine learning methods,
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particularly LSTM and XGBoost, vyield
significant  accuracy improvements in
Canadian DHS. Along similar lines, Shakeel et
al. [25] introduced a hybrid LightGBM—-FB
Prophet model, demonstrating the ability to
overcome sparse-data challenges and
providing superior accuracy in operational
heat demand forecasting. In China, Liu et al.
[26] implemented a dynamic integrated
control strategy, which incorporated multiple
correction factors to better align supply with
demand, achieving notable improvements in
energy efficiency and emission reduction.
Finally, Morteza et al. [27] explored Deep
Recurrent Neural Networks (DRNNs) for
medium- to long-term forecasting,
emphasizing the importance of
hyperparameter optimization. Their work
confirmed that tailored deep learning
architectures significantly outperform
conventional models in energy demand
prediction.

3.3 Explainable Al in district heating

Explainable Al in district heating has been
advancing along two complementary tracks:
data-centric XAl readiness—i.e., curated
SCADA datasets and platforms that ensure
reliable, interpretable inputs—and model-
centric explainability—i.e., forecasting
models whose inner workings (features, lags,
temporal focus) can be understood and
trusted by operators.

Recent work formalizes the data backbone
needed for explainable control in DHS. An
integrated data-acquisition platform
aggregates SCADA, |oT, and weather streams
into a unified time-series repository, enabling
real-time monitoring and predictive control;
the platform is positioned as the core of an
explainable control approach (XAI4HEAT) that
combines XAl algorithms with model-based
predictive control for dynamic heat-supply
adjustment. This line of work explicitly
motivates explainability for operator trust,
situational awareness, and decision support
[28]. Building on the same program, the
platform’s conclusions emphasize that
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curated, multi-source data ingestion is
prerequisite to intelligent, explainable DHS
operation [28].

Complementing the platform perspective,
a curated SCADA dataset for enhanced
explainability documents five years of
substation-level measurements
(supply/return temperatures on both primary
and secondary circuits, energy transmission,
local meteorology) and, crucially,
standardizes the data to uniform hourly
resolution without errors or missing values—
a property that directly supports reliable
model interpretation and feature attribution
[29]. The dataset is explicitly positioned to
facilitate explainable analyses in smart-energy
research and DHS practice [29].

On the modeling side, Neubauer et al.
develop a multi-step heating-load forecaster
that marries an Encoder—Decoder
architecture with SHAP feature attributions
and temporal attention. They show that
attention weights and SHAP values increase
interpretability; feature selection guided by
Deep SHAP reduces training time and error;
and future weather features materially
improve accuracy—findings that connect XAl
directly to both performance and operator
insight [30].

Going beyond post-hoc explanations,
Souza et al. (HELIOS) embed explainability
into the model structure by combining physics
and expert knowledge. The approach
decomposes heat load into space heating,
domestic hot water, and transmission losses,
links them through a causal graph, and
leverages contextual mixture-of-experts to
encode domain priors—yielding transparent
predictions and superior accountability
relative to black-box baselines [30]. The
authors further argue that such inherent
interpretability fosters stakeholder trust and
supports operational decision-making [30].

Together, these strands outline a practical
XAl framework for DHS: curate XAl-ready data
(platform + dataset) to ensure valid, aligned
inputs; adopt interpretable forecasting (SHAP
+ attention) to expose feature and temporal
contributions; and, where possible, encode
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physics/expert knowledge to make
explanations intrinsic rather than purely post-
hoc. This triangulation supports transparent
forecasting, operator trust, and integration
with predictive control in real networks [30].

4. METHODOLOGY

The data used in this study were obtained
from the SCADA system of the Faculty of
Mechanical Engineering in Nis, specifically
from the heat substation in Lamela L8. For the
purpose of this analysis, two input variables
were selected: outdoor air temperature
(t_amb) and supply water temperature in the
primary circuit (t_sup_prim). These variables
were chosen due to their direct physical
influence on heat consumption and district
heating system operation.

A specific characteristic of the dataset is
that it is irregularly sampled, meaning that
measurements were not always recorded at
equal time intervals. The causes of such
irregularities may be of a technical nature
(interruptions in data acquisition,
communication issues) but can also result
from the dynamic operation of the system. In
addition to irregular sampling, the dataset
also contains missing values, which further
complicates the analysis process. These
challenges require the application of special
preprocessing procedures to ensure a uniform
time grid and consistent inputs for the
prediction model. The focus of this study is
precisely on addressing these issues, as the
quality of preprocessing directly determines
the reliability and accuracy of the subsequent
forecasting model. By carefully regularizing
the time series and handling missing values,
the study emphasizes the importance of
preparing real-world SCADA data for robust
and interpretable predictive modeling.

4.1 Data Preprocessing

The dataset contains time-stamped
measurements with irregular sampling
intervals and occasional missing values. To
enable numerical processing:
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1. Time conversion: Original timestamps
were transformed into numerical values
expressed as the elapsed hours from the initial
timestamp. This was calculated as the
difference between serial date numbers,
which allows the time variable to be treated as
a continuous numerical input in the model.

2. Regularization of the time grid: The
entire dataset was resampled to a 15-minute

resolution to ensure comparability of
observations.

3. Handling missing values: A local
Lagrange interpolation  method  with
barycentric weights was applied. The

interpolation order was limited to a maximum
of n = 2, with a fallback to lower orders if the
data density was insufficient. Additionally, a
guardrail mechanism was used to prevent
interpolation across gaps longer than 90
minutes, where missing values were
preserved as NaN.

4. Value clipping: Interpolated results
were restricted within physically meaningful
ranges (e.g., outdoor temperature between
-40 °C and 80 °C) to prevent unrealistic
estimates.

In this context, preprocessing is the central
contribution of the research. The
methodology demonstrates how irregular and
incomplete SCADA data can be systematically
transformed into a structured form suitable
for machine learning, thereby ensuring both
model accuracy and interpretability.

5. RESULTS AND DISCUSSION

Local Lagrange (max n=2, guarded) — t_amb

Observed
Lagrange (local, guarded)

t_amb

-10 ;
Nov 2024 Dec 2024 Jan 2025 Feb 2025

Time
Figure 3. Observed and interpolated outdoor air
temperature

Mar 2025 Apr 2025

502

The interpolation results reveal substantial
differences in accuracy between the outdoor
air temperature (t_amb) and the supply water
temperature in the primary circuit
(t_sup_prim).
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Figure 4. Validation error of local Lagrange
interpolation for outdoor air temperature
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factor for outdoor air temperature
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Figure 6. Interpolation error versus estimated
higher-order derivative term for outdoor air
temperature
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For outdoor temperature, the local
Lagrange interpolation (n=2) demonstrated
very good agreement with the observed data.
The interpolated curve (Fig.1) smoothly
follows seasonal variations, while deviations
remain minor. In most cases, the interpolation
error remained below 0.5, with occasional
peaks up to 1.8. The analysis with respect to
the estimated curvature of the function
f@™*Dceonfirms the expected positive
correlation — errors increase as curvature
grows, consistent with interpolation theory.
This indicates that the method is sufficiently
robust for processing meteorological data.
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Figure 7. Observed and interpolated primary
supply water temperature using local Lagrange
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interpolation for primary supply water
temperature
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Figure 9. Interpolation error versus theoretical
factor for primary supply water temperature
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Figure 10. Interpolation error versus estimated
higher-order derivative term for primary supply
water temperature

In contrast, for supply water temperature
in the primary circuit, interpolation accuracy is
significantly lower. The results exhibit larger
deviations between observed and
interpolated values, as well as anomalies,
including sudden drops that the method failed
to capture. The interpolation error ranged
widely, with values reaching up to 35-37,
which is several times higher than for the
outdoor temperature. The correlation with
the theoretical factor proved negligible, while
the dependency on the estimated curvature
of the function was present but with
considerable scattering.

Based on these findings, it can be
concluded that the local Lagrange
interpolation method is suitable and

sufficiently accurate for outdoor temperature,
while for the supply water temperature in the
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primary circuit it requires refinement or
replacement with more advanced approaches
(e.g., spline interpolation, data filtering, or

machine learning—based reconstruction).
These results emphasize the importance of
carefully selecting and combining

preprocessing methods depending on the
physical nature of the variables and the
dynamics of the system.

6. CONCLUSION

This study demonstrated how the
challenges of irregularly sampled SCADA data
in district heating systems can be addressed
through advanced preprocessing techniques
and the application of explainable machine
learning models. By focusing on outdoor air
temperature and primary supply water
temperature, the analysis highlighted
substantial differences in interpolation
accuracy, showing that some variables can be
reliably reconstructed while others require
more sophisticated approaches.

Beyond the specific case of district heating,
the presented methodology illustrates a
general framework applicable to production
engineering systems, where data
irregularities, missing values, and operational
variability are common. The integration of
mathematical interpolation theory with
explainable Al provides not only accurate
forecasts but also transparent insights into
system behavior, which is essential for
decision-making, process optimization, and
sustainable operation. Future research will
focus on the careful selection of prediction
models and the systematic application of XAl
methods fully aligned with Industry 5.0
principles, further enhancing predictive
accuracy, interpretability, and operator trust
in complex production systems.
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