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Abstract: Modern energy production systems, particularly in the district heating sector, face challenges 
caused by irregularly sampled time series resulting from asynchronous measurements, missing values, and 
variable operating conditions. These issues complicate the application of traditional forecasting methods. In 
this context, interpolation procedures play an important role, where the error depends on the curvature of 
the function and indicates the extent to which a polynomial of a given degree can approximate the observed 
signal, which is particularly important in irregular time series. In this way, a theoretical foundation is provided 
for understanding the limitations of data regularization and the irregularity of time series. The proposed work 
combines the theoretical analysis of interpolation with advanced time series processing and machine learning 
methods in order to support reliable forecasting, process optimization, and decision-making. The results 
highlight how theoretical insights into interpolation errors can guide the design of explainable and 
transparent forecasting models, thereby advancing smart energy production strategies aligned with Industry 
5.0. 
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1. INTRODUCTION  
 

Energy systems in transition, particularly 
district heating systems, rely on 
heterogeneous SCADA data streams that are 
often irregularly sampled due to 
asynchronous measurements, missing 
readings, and variable operating conditions. 
Although modern machine  

 
learning and deep learning models achieve 
high predictive accuracy, their lack of 

transparency hinders trust and limits their 
practical application in critical infrastructure. 
These challenges further emphasize the need 
for transparent and explainable models, in 
line with the principles of Industry 5.0, which 
are based on human-centricity, resilience, and 
sustainability[1,2]. Recent reviews of XAI 
approaches in the energy sector highlight 
issues of traceability, accountability, and 
certifiability, offering guidelines and principles 
for the implementation of explainable 
solutions in areas such as demand and 
production forecasting, as well as grid 
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management [3-5]. In the context of irregular 
time series, interpolation plays a crucial role 
in filling gaps and regularizing data. However, 
the accuracy of such procedures depends on 
the local curvature of the function, which 
directly affects the interpolation error and the 
limits of polynomial approximation of a given 
order [6]. At the same time, the application of 
XAI techniques, particularly SHAP and LIME, 
has been gaining increasing attention, as they 
enable deeper insights into the functioning of 
predictive models and the importance of 
individual features. At the household level, 
research confirms that XAI contributes to the 
reliable identification of consumption 
patterns (both current and historical) and the 
validation of model architectures using 
standard performance metrics (R², RMSE, 
MAE) [7]. Nevertheless, model explainability 
has no real value unless it is grounded in high-
quality data and methodologically consistent 
approaches. Inadequate regularization or 
excessive interpolation may generate 
convincing but misleading model 
interpretations. For this reason, modern XAI 
frameworks emphasize the necessity of 
aligning technical solutions with 
organizational and societal requirements, 
including transparency, accountability, and 
security—the core principles of Industry 5.0. 

Building on these challenges, this paper 
makes threefold contributions: (I) it links the 
theoretical framework of interpolation errors, 
derived from function curvature, with 
preprocessing procedures for irregular time 
series, (II) it integrates these insights into a 
modeling pipeline that seeks to preserve the 
authenticity of real system dynamics, and (III) 
it extends this pipeline with XAI analyses 
(SHAP/LIME) that enable the interpretation of 
predictions in the context of energy variables 
and operational decisions. In this way, the 
study contributes to the development of 
transparent and explainable predictive 
models that enhance trust, usability, and 
sustainability in line with the Industry 5.0 
paradigm. 
 

2. THEORETICAL FOUNDATIONS OF 
INTERPOLATION  
 

The theoretical analysis of interpolation 
errors provides not only a mathematical 
framework but also a practical tool for 
processing consumption data and forecasting 
load demand in district heating systems. The 
curvature of a function, expressed through 
higher-order derivatives, together with the 
distribution of interpolation nodes and 
multidimensional data processing, directly 
determines the limits of prediction accuracy. 
In the context of energy systems, and 
particularly district heating networks, 
interpolation techniques are applied during 
the processing of SCADA data, where missing 
or irregularly sampled values frequently 
occur. 

A classical result states that if 

      𝑓 ∈ 𝐶𝑛+1[𝑎, 𝑏]                          (1) 

the interpolation polynomial 
𝑝𝑛 (𝑥) satisfies the relation: 

𝑓(𝑥) − 𝑝𝑛(𝑥) =  
𝑓(𝑛+1)(𝜉𝑥)

(𝑛+1)!
 ∏ (𝑥 − 𝑥𝑖) 

𝑛
𝑖=1 (2) 

which indicates that the error magnitude 
depends both on the higher-order derivative 
of the function and on the choice of 
interpolation nodes [8,9]. This formula is 
analogous to the Taylor expansion, but differs 
in that the polynomial is constructed from 
function values at several distinct points, 
making it particularly suitable for time series 
characterized by discreteness and irregular 
sampling. The error f interpolation is often 
smaller if we increase the number of nodes. 
But, there are some counterexamples. 

 
2.1 Example 1. Consider the Runge function: 

𝑓(𝑥) =
1

1 + 𝑥2 
  ,      𝑥

∈ [−5,5].                     (3) 
In contrast to our expectations, increasing the 
number of nodes especially in the segments   
[-5,-3] and [3,5], has the consequence that the 
interpolation (blue curve) gives significant 
error. Even more,  

 



40th ICPES                                             60th Anniversary of the Association of Production Engineering of Serbia 

498 

max
−5≤𝑥≤5

‖𝑓(𝑥) − 𝑄𝑛(𝑥)‖ → ∞,    𝑛 → ∞     (4) 

 
On the Figure 1, the divergence is obvious 

for n=10. This example illustrates that 
interpolation error may increase despite using 
more nodes. This naturally raises the question 
of how the choice of interpolation nodes 
affects the error. Until now, the discussion has 
been based on the assumption that the 
interpolation nodes are fixed. 

Figure 1. Illustration of Runge’s phenomenon 

 
In the entire discussion up to now, it is 

assumed that the interpolation nodes are 
given.  

If this is the case, it would be reasonable to 
use this degree of freedom to minimize the 
interpolation error.  

The distribution of error strongly depends 
on the selection of interpolation nodes. For 
uniformly distributed nodes, oscillations and 
significant growth of error occur near the 
interval boundaries, a phenomenon known as 
Runge’s phenomenon. In energy applications, 
particularly in heat demand analysis, such an 
effect may lead to inaccurate forecasts during 
periods of sudden outdoor temperature 
changes. Therefore, special node 
distributions, such as Chebyshev nodes, are 
employed to provide a more balanced error 
distribution and to minimize the maximum 
deviation of the interpolation polynomial 
from the actual data [10-12]. 

Apart from node selection, the nature of 
the underlying function also plays an 
important role. Rapid growth of higher-order 
derivatives (e.g., sudden changes in heat load) 
can significantly increase the interpolation 
error, demonstrating that increasing the 
number of interpolation points does not 
necessarily improve the approximation. This 
demonstrates that increasing the number of 
interpolation points does not necessarily 
improve the approximation and that, in real 
district heating operations, a compromise 
must be made between complexity and 
stability [12]. 

In such circumstances, the use of spline 
functions becomes particularly relevant, as 
they enable stable interpolation through local 
low-degree polynomials. Unlike global 
polynomials, splines ensure smoothness of 
the function and continuity of derivatives, 
which is especially important in energy 
systems where changes in load and 
temperature must remain physically 
consistent. In this way, the risk of oscillations 
and error accumulation is reduced, and the 
reconstructed data provide a more reliable 
basis for modeling heat substations [13,14].  

On some real interval [a, b] notice its 
partition ℙ  with nodes 
ℙ: a = x0 < x1 < ⋯ < xn−1 < xn = b, (n ∈ N) 

Suppose that for a function  f(x) are known 
values fk = f(xk)  (k = 0,1, … , n) 
 
The function Sm(x) = Sm,k(x; f; ℙ) is 
polynomial spline with degree m and defect k 
(1 ≤ k ≤ m) for  f(x) if 
1) For every i ∈ {1,2, … , n}, and for every  x ∈
(xi−1, xi), Sm(x) is a polynomial with degree 
at most m; 
2) Sm(x) is a part-by-part interpolating 
polynomial, i.e. Sm(xi) = fi  (i = 0,1, … , n); 
3) Sm(x) is a continuously differentiable 
function with its derivatives until order m− k 
on [a, b], i.e. 

Sm
(k)(xi

−) = Sm
(k)(xi

+)    
(k = 1,… ,m − k;   i = 1, … , n − 1). 
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Figure 2 illustrates the concept of a spline as a 
piecewise polynomial that maintains 
smoothness across interval boundaries. 

Figure 2. Natural cubic spline interpolation  

These insights form the foundation for 
subsequent methods in this work that 
combine interpolation with machine learning 
and explainable artificial intelligence (XAI) to 
enhance transparency and reliability in district 
heating operations. 
 
3. RELATED WORK 
 
3.1 Data characteristics and 
preprocessing of irregular time series  

 
Research focusing on data processing in 

district heating systems highlights that SCADA 
and smart meters typically provide key 
variables such as supply and return water 
temperatures, thermal energy, flow, and 
outdoor temperature. For example, Cvetković 
et al. document a publicly available SCADA 
dataset in which measurements were 
collected at the substation level and 
standardized to hourly time steps after 
cleaning, resulting in time series without 
errors or missing values [15]. Similarly, 
Schaffer et al. present a three-year dataset 
from 3,021 smart meters, where raw readings 
deviated by up to ±30 minutes from the full 
hour and were therefore subjected to initial 
screening, linear interpolation, and 

imputation to obtain a fully equidistant hourly 
series [16]. 

Typical challenges include irregularity and 
missing values. In practice, timestamps are 
not always aligned due to communication 
delays or technical faults, which leads to gaps 
in the series. Chatterjee et al. emphasize that 
raw smart meter data are often irregularly 
spaced and therefore require interpolation 
and resampling before being used in 
predictive models [17]. In addition, Steindl et 
al. point out that the transition from daylight 
saving time (DST) to standard time can 
produce incorrect measurement order, so it is 
recommended to explicitly remove readings 
recorded between 02:00–02:59 during this 
transition [18]. 

The proposed preprocessing procedures 
form a clear pipeline. In the first stage, data 
are checked for inconsistencies, especially 
cumulative variables such as energy or flow, 
where monotonicity is required (each new 
value must be greater than or equal to the 
previous one). A similar approach was applied 
in studies on fault detection based on smart 
meter data [19]. Interpolation and resampling 
are then performed—most often linear—in 
order to form an equidistant time grid (hourly 
or 15-minute). Short gaps up to one hour are 
typically filled by linear interpolation, while 
longer gaps are usually excluded from analysis 
[18]. Afterward, the remaining small fraction 
of missing values is imputed using moving-
window methods. Schaffer et al. conducted a 
systematic comparison of different 
techniques and demonstrated that a 
weighted moving average with a 48-hour 
symmetric window, combined with scaling 
that respects the cumulative trend, yields the 
best results for smart meters [16]. Finally, 
when measurements are quantized or 
truncated at the hourly level (e.g., due to 
utility data storage practices), aggregation to 
daily values is recommended to reduce 
rounding errors and provide a more stable 
series for anomaly detection [20]. 

Beyond classical procedures, the 
importance of documenting the entire 
process through formal data-curation 
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guidelines is emphasized. Stecher et al. 
recommend an approach inspired by the 
CRISP-DM methodology, adapted to the DHS 
domain: defining objectives, understanding 
the data, integrating multiple sources (SCADA 
and meteorology), and performing systematic 
cleaning and annotation. 

 
3.2  Forecasting heat demand in district 

heating systems  
 
Conventional approaches to heat demand 

forecasting in district heating systems (DHS) 
are primarily rule-based, relying heavily on 
weather forecasts and, in particular, ambient 
temperature. This control strategy, known as 
weather compensation, can provide 
acceptable decisions in certain circumstances 
but rarely achieves optimality. In practice, this 
often results in overheating, observable 
through elevated supply line water 
temperatures and decreased heat load. While 
end-user comfort is usually unaffected, such 
inefficiencies lead to increased fuel 
consumption and negative environmental 
impacts.  

Several empirical studies highlight the 
progress from conventional to advanced data-
driven models. 

Potočnik et al. [21] pioneered the use of 
Gaussian Process Regression (GPR) in 
Slovenia’s largest DHS, demonstrating that 
nonlinear models substantially improve short-
term forecasting accuracy. Building on this, 
Zdravković et al. [22] proposed a proactive 
control strategy based on deep learning, 
where different LSTM architectures enabled 
more adaptive and responsive system 
operation. In a complementary study, Kurek 
et al. [23] combined traditional approaches 
with fuzzy logic models, adapted to seasonal 
variations, to manage Warsaw’s large district 
heating network, underlining the potential of 
ANNs in complex urban environments. 

The scope of AI applications has been 
further expanded in comparative studies. 
Runge and Saloux [24] investigated predictive 
versus forecasting paradigms, showing that 
advanced machine learning methods, 

particularly LSTM and XGBoost, yield 
significant accuracy improvements in 
Canadian DHS. Along similar lines, Shakeel et 
al. [25] introduced a hybrid LightGBM–FB 
Prophet model, demonstrating the ability to 
overcome sparse-data challenges and 
providing superior accuracy in operational 
heat demand forecasting. In China, Liu et al. 
[26] implemented a dynamic integrated 
control strategy, which incorporated multiple 
correction factors to better align supply with 
demand, achieving notable improvements in 
energy efficiency and emission reduction. 
Finally, Morteza et al. [27] explored Deep 
Recurrent Neural Networks (DRNNs) for 
medium- to long-term forecasting, 
emphasizing the importance of 
hyperparameter optimization. Their work 
confirmed that tailored deep learning 
architectures significantly outperform 
conventional models in energy demand 
prediction. 

 
3.3 Explainable AI in district heating 

 
Explainable AI in district heating has been 

advancing along two complementary tracks: 
data-centric XAI readiness—i.e., curated 
SCADA datasets and platforms that ensure 
reliable, interpretable inputs—and model-
centric explainability—i.e., forecasting 
models whose inner workings (features, lags, 
temporal focus) can be understood and 
trusted by operators. 

Recent work formalizes the data backbone 
needed for explainable control in DHS. An 
integrated data-acquisition platform 
aggregates SCADA, IoT, and weather streams 
into a unified time-series repository, enabling 
real-time monitoring and predictive control; 
the platform is positioned as the core of an 
explainable control approach (XAI4HEAT) that 
combines XAI algorithms with model-based 
predictive control for dynamic heat-supply 
adjustment. This line of work explicitly 
motivates explainability for operator trust, 
situational awareness, and decision support 
[28]. Building on the same program, the 
platform’s conclusions emphasize that 
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curated, multi-source data ingestion is 
prerequisite to intelligent, explainable DHS 
operation [28]. 

Complementing the platform perspective, 
a curated SCADA dataset for enhanced 
explainability documents five years of 
substation-level measurements 
(supply/return temperatures on both primary 
and secondary circuits, energy transmission, 
local meteorology) and, crucially, 
standardizes the data to uniform hourly 
resolution without errors or missing values—
a property that directly supports reliable 
model interpretation and feature attribution 
[29]. The dataset is explicitly positioned to 
facilitate explainable analyses in smart-energy 
research and DHS practice [29]. 

On the modeling side, Neubauer et al. 
develop a multi-step heating-load forecaster 
that marries an Encoder–Decoder 
architecture with SHAP feature attributions 
and temporal attention. They show that 
attention weights and SHAP values increase 
interpretability; feature selection guided by 
Deep SHAP reduces training time and error; 
and future weather features materially 
improve accuracy—findings that connect XAI 
directly to both performance and operator 
insight [30]. 

Going beyond post-hoc explanations, 
Souza et al. (HELIOS) embed explainability 
into the model structure by combining physics 
and expert knowledge. The approach 
decomposes heat load into space heating, 
domestic hot water, and transmission losses, 
links them through a causal graph, and 
leverages contextual mixture-of-experts to 
encode domain priors—yielding transparent 
predictions and superior accountability 
relative to black-box baselines [30]. The 
authors further argue that such inherent 
interpretability fosters stakeholder trust and 
supports operational decision-making [30]. 

Together, these strands outline a practical 
XAI framework for DHS: curate XAI-ready data 
(platform + dataset) to ensure valid, aligned 
inputs; adopt interpretable forecasting (SHAP 
+ attention) to expose feature and temporal 
contributions; and, where possible, encode 

physics/expert knowledge to make 
explanations intrinsic rather than purely post-
hoc. This triangulation supports transparent 
forecasting, operator trust, and integration 
with predictive control in real networks [30]. 

 
4. METHODOLOGY 

 
The data used in this study were obtained 

from the SCADA system of the Faculty of 
Mechanical Engineering in Nis, specifically 
from the heat substation in Lamela L8. For the 
purpose of this analysis, two input variables 
were selected: outdoor air temperature 
(t_amb) and supply water temperature in the 
primary circuit (t_sup_prim). These variables 
were chosen due to their direct physical 
influence on heat consumption and district 
heating system operation. 

A specific characteristic of the dataset is 
that it is irregularly sampled, meaning that 
measurements were not always recorded at 
equal time intervals. The causes of such 
irregularities may be of a technical nature 
(interruptions in data acquisition, 
communication issues) but can also result 
from the dynamic operation of the system. In 
addition to irregular sampling, the dataset 
also contains missing values, which further 
complicates the analysis process. These 
challenges require the application of special 
preprocessing procedures to ensure a uniform 
time grid and consistent inputs for the 
prediction model. The focus of this study is 
precisely on addressing these issues, as the 
quality of preprocessing directly determines 
the reliability and accuracy of the subsequent 
forecasting model. By carefully regularizing 
the time series and handling missing values, 
the study emphasizes the importance of 
preparing real-world SCADA data for robust 
and interpretable predictive modeling.  
 
4.1 Data Preprocessing 

The dataset contains time-stamped 
measurements with irregular sampling 
intervals and occasional missing values. To 
enable numerical processing: 
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1. Time conversion: Original timestamps 
were transformed into numerical values 
expressed as the elapsed hours from the initial 
timestamp. This was calculated as the 
difference between serial date numbers, 
which allows the time variable to be treated as 
a continuous numerical input in the model. 
2. Regularization of the time grid: The 
entire dataset was resampled to a 15-minute 
resolution to ensure comparability of 
observations. 
3. Handling missing values: A local 
Lagrange interpolation method with 
barycentric weights was applied. The 
interpolation order was limited to a maximum 
of n = 2, with a fallback to lower orders if the 
data density was insufficient. Additionally, a 
guardrail mechanism was used to prevent 
interpolation across gaps longer than 90 
minutes, where missing values were 
preserved as NaN. 
4. Value clipping: Interpolated results 
were restricted within physically meaningful 
ranges (e.g., outdoor temperature between 
−40 °C and 80 °C) to prevent unrealistic 
estimates. 

In this context, preprocessing is the central 
contribution of the research. The 
methodology demonstrates how irregular and 
incomplete SCADA data can be systematically 
transformed into a structured form suitable 
for machine learning, thereby ensuring both 
model accuracy and interpretability. 

 

5. RESULTS AND DISCUSSION 

 
Figure 3. Observed and interpolated outdoor air 

temperature 

The interpolation results reveal substantial 
differences in accuracy between the outdoor 
air temperature (t_amb) and the supply water 
temperature in the primary circuit 
(t_sup_prim). 

 

Figure 4. Validation error of local Lagrange 
interpolation for outdoor air temperature 

 

Figure 5. Interpolation error versus theoretical 
factor for outdoor air temperature 

 

Figure 6. Interpolation error versus estimated 
higher-order derivative term for outdoor air 

temperature 
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For outdoor temperature, the local 
Lagrange interpolation (n=2) demonstrated 
very good agreement with the observed data. 
The interpolated curve (Fig.1) smoothly 
follows seasonal variations, while deviations 
remain minor. In most cases, the interpolation 
error remained below 0.5, with occasional 
peaks up to 1.8. The analysis with respect to 
the estimated curvature of the function 

𝑓(𝑛+1)confirms the expected positive 
correlation – errors increase as curvature 
grows, consistent with interpolation theory. 
This indicates that the method is sufficiently 
robust for processing meteorological data. 

 

 

Figure 7. Observed and interpolated primary 

supply water temperature using local Lagrange 

method 

 

Figure 8. Validation error of local Lagrange 

interpolation for primary supply water 

temperature 

 

Figure 9. Interpolation error versus theoretical 

factor for primary supply water temperature 

 

Figure 10. Interpolation error versus estimated 

higher-order derivative term for primary supply 

water temperature 

In contrast, for supply water temperature 
in the primary circuit, interpolation accuracy is 
significantly lower. The results exhibit larger 
deviations between observed and 
interpolated values, as well as anomalies, 
including sudden drops that the method failed 
to capture. The interpolation error ranged 
widely, with values reaching up to 35–37, 
which is several times higher than for the 
outdoor temperature. The correlation with 
the theoretical factor proved negligible, while 
the dependency on the estimated curvature 
of the function was present but with 
considerable scattering. 

Based on these findings, it can be 
concluded that the local Lagrange 
interpolation method is suitable and 
sufficiently accurate for outdoor temperature, 
while for the supply water temperature in the 
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primary circuit it requires refinement or 
replacement with more advanced approaches 
(e.g., spline interpolation, data filtering, or 
machine learning–based reconstruction). 
These results emphasize the importance of 
carefully selecting and combining 
preprocessing methods depending on the 
physical nature of the variables and the 
dynamics of the system. 

 
6. CONCLUSION 
 
This study demonstrated how the 

challenges of irregularly sampled SCADA data 
in district heating systems can be addressed 
through advanced preprocessing techniques 
and the application of explainable machine 
learning models. By focusing on outdoor air 
temperature and primary supply water 
temperature, the analysis highlighted 
substantial differences in interpolation 
accuracy, showing that some variables can be 
reliably reconstructed while others require 
more sophisticated approaches. 

Beyond the specific case of district heating, 
the presented methodology illustrates a 
general framework applicable to production 
engineering systems, where data 
irregularities, missing values, and operational 
variability are common. The integration of 
mathematical interpolation theory with 
explainable AI provides not only accurate 
forecasts but also transparent insights into 
system behavior, which is essential for 
decision-making, process optimization, and 
sustainable operation. Future research will 
focus on the careful selection of prediction 
models and the systematic application of XAI 
methods fully aligned with Industry 5.0 
principles, further enhancing predictive 
accuracy, interpretability, and operator trust 
in complex production systems. 
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