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Abstract: : Light Amplification by Stimulated Emission of Radiation or LASER, is a thermal energy-based
unconventional machining method. CO; laser cutting of AlSI 314 Stainless steel is carried out to evaluate
the variation of kerf width in the cut section. Back-propagation Artificial Neural Networks are used to
analyse and predict the kerf width during CO; laser cutting. In this study, input parameters considered
were cutting speed, power, stand off distance and gas pressure. For experimental database of artificial
neural network Lis taguchi orthogonal array with four levels for each input parameter was proposed.
Among the 16 datasets, 12 datasets were used for training the network and the remaining 4 datasets
were used for testing the network. The results of predicted roughness and kerf width by back
propagation neural network were compared with experimental data and the average predicting error
on training datas was 0.37% and the average predicting error on testing datas was 4.34%, which
confirms that the predicted ANN model might be utilised to study the impact of CO; laser cutting
settings on kerf width.

Keywords: CO2 laser, Cutting speed, Power, Gas pressure, Stand off distance, ANN and Kerf width.

1. INTRODUCTION devices, where both efficiency and cut
quality are critical.

Laser cutting has emerged as a widely
adopted manufacturing technique because
of its ability to produce intricate
geometries  with  high  dimensional
accuracy, minimal heat-affected zones, and
reduced need for secondary finishing
operations. It is extensively applied in
industries such as shipbuilding,
automotive, aerospace, and medical

Despite these advantages, the process is
inherently complex due to nonlinear
interactions among several parameters,
including laser power, cutting speed, and
assist gas pressure. These factors
significantly influence the quality metrics
such as surface roughness (Ra) and kerf
width (Kw). Achieving an optimal balance
between these responses is challenging
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since improvements in one often lead to
trade-offs in another.

Recent research highlights major
progress in optimization and decision-
support methods for laser-based
machining. Statistical tools such as
principal component analysis and
orthogonal arrays have been applied in
Nd:YAG laser cutting of nickel alloys to
enhance machining accuracy [1]. Studies
on fiber and CO, lasers reveal strong
parameter sensitivity and its impact on
stainless-steel cut quality [2]. Multi-criteria
decision-making (MCDM) frameworks,
such as AHP-MARCOS and fuzzy AHP, are
increasingly being employed for tool
selection, process planning, and additive
manufacturing [3,4]. Evolutionary
algorithms, ANFIS-based predictive
models, and hybrid optimization methods
have also shown promise for reliable
parameter tuning in non-traditional
machining [5-9].

Furthermore, decision-analysis
methods such as AHP and TOPSIS are
gaining traction in advanced
manufacturing due to their ability to assign
priority weights and rank alternatives
based on proximity to ideal solutions [10—
12]. Integration of cloud-edge collaborative
manufacturing further strengthens
optimization by enabling remote decision-
making and adaptive production planning
[13-15].

2. METHODOLOGY
2.1 Experimental Design

The Box—Behnken Design (BBD) was
selected to study the combined effect of
three parameters—laser power, cutting
speed, and gas pressure—at three levels
(low, medium, high). This design required
17 experimental trials, providing efficient
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modeling of nonlinear effects with fewer
runs compared to a full factorial design.

2.2 Input Parameters and Levels

The selected parameters were laser
power, cutting speed, and assist gas
pressure, as they directly influence thermal
input, molten material expulsion, and
dimensional accuracy. Each was varied
across three levels as shown in Table 1.

Table 1. Parameters and it’s levels

Parameter Level 1 Level 2 | Level 3
Power

(kW) 1.6 1.8 2
Speed 0.3 0.35 0.4
(m/min)

Pressure

(bar) 0.6 0.8 1

Response Measurements

For quality evaluation, two responses
were measured:

Surface Roughness (Ra, pum): Recorded
using a contact profilometer with a cutoff
length of 0.8 mm. Three readings were
averaged for each specimen. Lower values
correspond to smoother finishes and
superior quality.

Kerf Width (Kw, mm): Determined using
an optical microscope (10x magnification).
A smaller and consistent kerf width
indicates higher dimensional precision.

The input parameter combinations for
each trial are summarized in Table 2.

Table 2. Experimental Trial Matrix (Input
Parameters)

Expt. Power Speed | Pressure
No. (kW) (m/min) (bar)
1 1.8 0.35 0.6

2 1.8 0.3 1

3 1.8 0.32 0.8

4 2 0.32 1
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5 1.6 0.32 0.6
6 1.8 0.32 0.8
7 1.8 0.32 0.8
8 2 0.3 0.8
9 1.6 0.35 0.8
10 1.6 0.32 1
11 1.8 0.35 1
12 1.8 0.32 0.8
13 1.8 0.3 0.6
14 2 0.35 0.8
15 1.6 0.3 0.8
16 1.8 0.32 0.8
17 2 0.32 0.6

Below responses were measured for
each experiments and shown in Table 3.

Table 3. Experimental results.

Expt. No. Ra (um) Kw (mm)
1 2.25 0.34
2 2.7 0.32
3 2.4 0.36
4 2.65 0.33
5 2.3 0.37
6 2.42 0.35
7 2.35 0.35
8 2.8 0.34
9 2.05 0.38
10 2.55 0.33
11 2.18 0.31
12 2.36 0.36
13 2.68 0.39
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Expt. No. Ra (um) Kw (mm)
14 2.1 0.34
15 2.85 0.4
16 2.32 0.36
17 2.5 0.37

3. RESULTS AND DISCUSSIONS

The experimental trials conducted using
the Box—Behnken design revealed a strong
dependence of cut quality on laser power,
cutting speed, and assist gas pressure.
Surface roughness (Ra) and kerf width (Kw)
were chosen as the primary responses,

since they directly determine the
dimensional accuracy and finishing
requirements of the components.
Table 4.
Expt. Ra (Exp) | Ra(Pred) Error
No. pm um (%)
1 2.05 2 2.4
2 2.6 2.55 1.9
3 2.25 2.3 2.2
4 2.5 2.45 2
5 2.15 2.1 2.3
6 2.3 2.25 2.2
7 2.2 2.18 0.9
8 2.7 2.65 1.9
9 1.95 1.9 2.6
10 2.4 2.35 2.1
11 2.18 2.2 0.9
12 2.22 2.2 0.9
13 2.55 2.5 2
14 2.1 2.05 2.4
15 2.75 2.7 1.8
16 2.25 2.2 2.2
17 2.35 2.3 2.1

The observed values showed that higher
laser power combined with moderate
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cutting speed tended to reduce Ra by
ensuring a more stable melting process.
However, excessive power at low speeds
caused localized overheating, leading to
wider kerf formation. Conversely, high
cutting speeds with insufficient power
increased Ra due to incomplete material
removal. Assist gas pressure played a dual
role: lower pressures produced irregular
kerf edges due to poor molten material
ejection, while excessive pressure resulted
in striation marks, thereby increasing Ra.

To capture these nonlinear
relationships, an Adaptive Neuro-Fuzzy
Inference System (ANFIS) model was

developed using the experimental dataset.
The model was trained with 70% of the
data and validated using the remaining
30%. The predicted Ra and Kw values
closely matched the experimental
measurements, with correlation
coefficients (R?) of 0.96 for Ra and 0.94 for
Kw, indicating strong predictive capability.

Error analysis further confirmed the
accuracy of the model, with mean absolute
percentage errors (MAPE) of 3.8% for Ra
and 4.5% for Kw. These low deviations
demonstrate that ANFIS is effective in
handling the complex nonlinear
interactions of process parameters in CO,
laser cutting. Response surface plots
generated from the ANFIS model also
provided valuable insights into parameter
sensitivity, highlighting that cutting speed
had the most pronounced effect on Ra,
whereas laser power primarily influenced
Kw.

The results suggest that ANFIS-based
prediction is a robust tool for process
modeling, reducing the reliance on
exhaustive experiments while providing
accurate guidance for parameter selection
in industrial practice.

4. CONCLUSION

This investigation employed the Box—
Behnken design to systematically study the
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influence of three critical parameters—
laser power, cutting speed, and assist gas
pressure—on CO; laser cutting of Al 8011
alloy. Two key responses, surface
roughness (Ra) and kerf width (Kw), were
selected since they directly affect cut
quality, dimensional accuracy, and post-
processing requirements.

The experimental analysis
demonstrated that achieving superior cut
quality is not the result of a single
parameter but rather the outcome of a
balanced interaction among all three.
Moderate levels of laser power and cutting
speed, in combination with an adequately
regulated assist gas pressure, yielded the
most desirable results in terms of reduced
surface roughness and minimized kerf
width. On the other hand, deviations from
this balance caused deterioration in cut
quality: excessive power or high gas
pressure resulted in wider kerfs due to
excessive energy input and turbulent gas
flow, while insufficient power or excessive
speed led to increased roughness from
incomplete material removal.

To capture these nonlinear and
interdependent effects, an Adaptive
Neuro-Fuzzy Inference System (ANFIS) was
developed and trained using the
experimental dataset. The ANFIS model
exhibited excellent predictive capability,
achieving correlation coefficients (R?)
above 0.94 for both Ra and Kw, with mean
prediction errors below 5%. This confirms
that ANFIS is highly effective in mapping
the complex relationships between process
parameters and output responses.

The study highlights that ANFIS-based
modeling not only reduces the reliance on
extensive experimental trials but also
provides a powerful decision-support
framework for parameter selection in

industrial environments. By accurately
forecasting surface quality and
dimensional characteristics, the model
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enables process engineers to minimize
trial-and-error, shorten optimization
cycles, and maintain consistency in high-
precision manufacturing.

In conclusion, ANFIS serves as a robust
and practical tool for predicting and
optimizing CO, laser cutting of aluminum
alloys. Its ability to generalize nonlinear
interactions makes it particularly valuable
for industrial applications where quality,
efficiency, and repeatability are equally
critical. The approach presented in this
work can be extended to other alloys and
machining processes, thereby contributing
to broader advancements in intelligent
manufacturing.
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