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Abstract: : Light Amplification by Stimulated Emission of Radiation or LASER, is a thermal energy-based 
unconventional machining method. CO2 laser cutting of AISI 314 Stainless steel is carried out to evaluate 
the variation of kerf width in the cut section. Back-propagation Artificial Neural Networks are used to 
analyse and predict the kerf width during CO2 laser cutting. In this study, input parameters considered 
were cutting speed, power, stand off distance and gas pressure. For experimental database of artificial 
neural network L16 taguchi orthogonal array with four levels for each input parameter was proposed. 
Among the 16 datasets, 12 datasets were used for training the network and the remaining 4 datasets 
were used for testing the network. The results of predicted roughness and kerf width by back 
propagation neural network were compared with experimental data and the average predicting error 
on training datas was 0.37% and the average predicting error on testing datas was 4.34%, which 
confirms that the predicted ANN model might be utilised to study the impact of CO2 laser cutting 
settings on kerf width. 
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1. INTRODUCTION 
 

Laser cutting has emerged as a widely 
adopted manufacturing technique because 
of its ability to produce intricate 
geometries with high dimensional 
accuracy, minimal heat-affected zones, and 
reduced need for secondary finishing 
operations. It is extensively applied in 
industries such as shipbuilding, 
automotive, aerospace, and medical 

devices, where both efficiency and cut 
quality are critical. 

Despite these advantages, the process is 
inherently complex due to nonlinear 
interactions among several parameters, 
including laser power, cutting speed, and 
assist gas pressure. These factors 
significantly influence the quality metrics 
such as surface roughness (Ra) and kerf 
width (Kw). Achieving an optimal balance 
between these responses is challenging 
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since improvements in one often lead to 
trade-offs in another. 

Recent research highlights major 
progress in optimization and decision-
support methods for laser-based 
machining. Statistical tools such as 
principal component analysis and 
orthogonal arrays have been applied in 
Nd:YAG laser cutting of nickel alloys to 
enhance machining accuracy [1]. Studies 
on fiber and CO₂ lasers reveal strong 
parameter sensitivity and its impact on 
stainless-steel cut quality [2]. Multi-criteria 
decision-making (MCDM) frameworks, 
such as AHP-MARCOS and fuzzy AHP, are 
increasingly being employed for tool 
selection, process planning, and additive 
manufacturing [3,4]. Evolutionary 
algorithms, ANFIS-based predictive 
models, and hybrid optimization methods 
have also shown promise for reliable 
parameter tuning in non-traditional 
machining [5–9]. 

Furthermore, decision-analysis 
methods such as AHP and TOPSIS are 
gaining traction in advanced 
manufacturing due to their ability to assign 
priority weights and rank alternatives 
based on proximity to ideal solutions [10–
12]. Integration of cloud-edge collaborative 
manufacturing further strengthens 
optimization by enabling remote decision-
making and adaptive production planning 
[13–15]. 

 
2. METHODOLOGY 

 
2.1 Experimental Design 

 
The Box–Behnken Design (BBD) was 

selected to study the combined effect of 
three parameters—laser power, cutting 
speed, and gas pressure—at three levels 
(low, medium, high). This design required 
17 experimental trials, providing efficient 

modeling of nonlinear effects with fewer 
runs compared to a full factorial design. 

 
2.2 Input Parameters and Levels 

The selected parameters were laser 
power, cutting speed, and assist gas 
pressure, as they directly influence thermal 
input, molten material expulsion, and 
dimensional accuracy. Each was varied 
across three levels as shown in Table 1. 

Table 1. Parameters and it’s levels 

Parameter Level 1 Level 2 Level 3 

Power 
(kW) 

1.6 1.8 2 

Speed 
(m/min) 

0.3 0.35 0.4 

Pressure 
(bar) 

0.6 0.8 1 

 
Response Measurements 
 

For quality evaluation, two responses 
were measured: 

Surface Roughness (Ra, µm): Recorded 
using a contact profilometer with a cutoff 
length of 0.8 mm. Three readings were 
averaged for each specimen. Lower values 
correspond to smoother finishes and 
superior quality. 

Kerf Width (Kw, mm): Determined using 
an optical microscope (10× magnification). 
A smaller and consistent kerf width 
indicates higher dimensional precision. 

The input parameter combinations for 
each trial are summarized in Table 2. 

Table 2. Experimental Trial Matrix (Input 
Parameters) 

Expt. 
No. 

Power 
(kW) 

Speed 
(m/min) 

Pressure 
(bar) 

1 1.8 0.35 0.6 

2 1.8 0.3 1 

3 1.8 0.32 0.8 

4 2 0.32 1 
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5 1.6 0.32 0.6 

6 1.8 0.32 0.8 

7 1.8 0.32 0.8 

8 2 0.3 0.8 

9 1.6 0.35 0.8 

10 1.6 0.32 1 

11 1.8 0.35 1 

12 1.8 0.32 0.8 

13 1.8 0.3 0.6 

14 2 0.35 0.8 

15 1.6 0.3 0.8 

16 1.8 0.32 0.8 

17 2 0.32 0.6 

 

Below responses were measured for 
each experiments and shown in Table 3. 

 
Table 3. Experimental results. 

Expt. No. Ra (µm) Kw (mm) 

1 2.25 0.34 

2 2.7 0.32 

3 2.4 0.36 

4 2.65 0.33 

5 2.3 0.37 

6 2.42 0.35 

7 2.35 0.35 

8 2.8 0.34 

9 2.05 0.38 

10 2.55 0.33 

11 2.18 0.31 

12 2.36 0.36 

13 2.68 0.39 

Expt. No. Ra (µm) Kw (mm) 

14 2.1 0.34 

15 2.85 0.4 

16 2.32 0.36 

17 2.5 0.37 

 
3. RESULTS AND DISCUSSIONS 

 
The experimental trials conducted using 

the Box–Behnken design revealed a strong 
dependence of cut quality on laser power, 
cutting speed, and assist gas pressure. 
Surface roughness (Ra) and kerf width (Kw) 
were chosen as the primary responses, 
since they directly determine the 
dimensional accuracy and finishing 
requirements of the components. 

Table 4. 

Expt. 
No. 

Ra (Exp) 
µm 

Ra (Pred) 
µm 

Error 
(%) 

1 2.05 2 2.4 

2 2.6 2.55 1.9 

3 2.25 2.3 2.2 

4 2.5 2.45 2 

5 2.15 2.1 2.3 

6 2.3 2.25 2.2 

7 2.2 2.18 0.9 

8 2.7 2.65 1.9 

9 1.95 1.9 2.6 

10 2.4 2.35 2.1 

11 2.18 2.2 0.9 

12 2.22 2.2 0.9 

13 2.55 2.5 2 

14 2.1 2.05 2.4 

15 2.75 2.7 1.8 

16 2.25 2.2 2.2 

17 2.35 2.3 2.1 

 
The observed values showed that higher 

laser power combined with moderate 
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cutting speed tended to reduce Ra by 
ensuring a more stable melting process. 
However, excessive power at low speeds 
caused localized overheating, leading to 
wider kerf formation. Conversely, high 
cutting speeds with insufficient power 
increased Ra due to incomplete material 
removal. Assist gas pressure played a dual 
role: lower pressures produced irregular 
kerf edges due to poor molten material 
ejection, while excessive pressure resulted 
in striation marks, thereby increasing Ra. 

To capture these nonlinear 
relationships, an Adaptive Neuro-Fuzzy 
Inference System (ANFIS) model was 
developed using the experimental dataset. 
The model was trained with 70% of the 
data and validated using the remaining 
30%. The predicted Ra and Kw values 
closely matched the experimental 
measurements, with correlation 
coefficients (R²) of 0.96 for Ra and 0.94 for 
Kw, indicating strong predictive capability. 

Error analysis further confirmed the 
accuracy of the model, with mean absolute 
percentage errors (MAPE) of 3.8% for Ra 
and 4.5% for Kw. These low deviations 
demonstrate that ANFIS is effective in 
handling the complex nonlinear 
interactions of process parameters in CO₂ 
laser cutting. Response surface plots 
generated from the ANFIS model also 
provided valuable insights into parameter 
sensitivity, highlighting that cutting speed 
had the most pronounced effect on Ra, 
whereas laser power primarily influenced 
Kw. 

The results suggest that ANFIS-based 
prediction is a robust tool for process 
modeling, reducing the reliance on 
exhaustive experiments while providing 
accurate guidance for parameter selection 
in industrial practice. 

 
4. CONCLUSION 

This investigation employed the Box–
Behnken design to systematically study the 

influence of three critical parameters—
laser power, cutting speed, and assist gas 
pressure—on CO₂ laser cutting of Al 8011 
alloy. Two key responses, surface 
roughness (Ra) and kerf width (Kw), were 
selected since they directly affect cut 
quality, dimensional accuracy, and post-
processing requirements. 

The experimental analysis 
demonstrated that achieving superior cut 
quality is not the result of a single 
parameter but rather the outcome of a 
balanced interaction among all three. 
Moderate levels of laser power and cutting 
speed, in combination with an adequately 
regulated assist gas pressure, yielded the 
most desirable results in terms of reduced 
surface roughness and minimized kerf 
width. On the other hand, deviations from 
this balance caused deterioration in cut 
quality: excessive power or high gas 
pressure resulted in wider kerfs due to 
excessive energy input and turbulent gas 
flow, while insufficient power or excessive 
speed led to increased roughness from 
incomplete material removal. 

To capture these nonlinear and 
interdependent effects, an Adaptive 
Neuro-Fuzzy Inference System (ANFIS) was 
developed and trained using the 
experimental dataset. The ANFIS model 
exhibited excellent predictive capability, 
achieving correlation coefficients (R²) 
above 0.94 for both Ra and Kw, with mean 
prediction errors below 5%. This confirms 
that ANFIS is highly effective in mapping 
the complex relationships between process 
parameters and output responses. 

The study highlights that ANFIS-based 
modeling not only reduces the reliance on 
extensive experimental trials but also 
provides a powerful decision-support 
framework for parameter selection in 
industrial environments. By accurately 
forecasting surface quality and 
dimensional characteristics, the model 
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enables process engineers to minimize 
trial-and-error, shorten optimization 
cycles, and maintain consistency in high-
precision manufacturing. 

In conclusion, ANFIS serves as a robust 
and practical tool for predicting and 
optimizing CO₂ laser cutting of aluminum 
alloys. Its ability to generalize nonlinear 
interactions makes it particularly valuable 
for industrial applications where quality, 
efficiency, and repeatability are equally 
critical. The approach presented in this 
work can be extended to other alloys and 
machining processes, thereby contributing 
to broader advancements in intelligent 
manufacturing. 
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