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Abstract: Additive Manufacturing (AM) has evolved into a robust industrial production technology, but its 
inherent process complexity poses significant challenges to ensuring consistent part quality and repeatability. 
Traditional quality control methods often take place in the post-process phase, being time-consuming and 
costly. This paper argues that the future of AM lies in the adoption of real-time, in-situ monitoring and closed-
loop control systems and offers several examples to fundament this claim. The AM systems leverage a 
network of sensors to collect vast amounts of data during the build process, enabling immediate analysis and 
corrective measures to prevent defect propagation. The methodology of this data-driven approach is 
explored, distinguishing between different in-situ monitoring solutions (optical, acoustic, and infrared 
sensors) and their practical implementation. A robust data management pipeline, incorporating advanced 
data reduction and AI/ML models, is essential to make this approach viable. The paper is discussed through 
four key research projects—CUSTODIAN, QuaL-DED, WAVETAILOR, and crystAIr—to illustrate these concepts 
in practice. These projects collectively demonstrate the importance of sensor fusion, AI-driven models and 
digital twins in establishing a self-optimising ecosystem that can significantly reduce scrap, accelerate 
development, and pave the way for a zero-defect manufacturing paradigm in AM. The conclusion is that 
digitalisation in AM is a critical shift that will secure the technology’s future in advanced industrial production. 
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1. INTRODUCTION 

 

Additive Manufacturing (AM), commonly 
known as 3D printing, has transitioned from a 
rapid prototyping technology to an established 
industrial production method, covering the 
applications that conventional processes 
cannot attend. This shift is particularly evident 
in processes like Laser Powder Bed Fusion (L-
PBF) and Laser Directed Energy Deposition (L-
DED), which together accounted for a 

significant portion of the global AM market in 
2025, that is 74% of all installed systems [1].  
 

The increasing adoption of AM in critical 
sectors, such as aerospace, medical devices, 
and energy, highlights the need for robust 
quality assurance and process control [2]. 
However, the complexity of AM processes, 
which involve numerous interdependent 
parameters like laser power, scan speed, 
powder flow, and temperature, makes it 
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challenging to ensure part quality and 
repeatability [3, 4]. 

 
 

Figure 1. The niche of AM technologies [2] and the 
AM production steps [3] 

The fundamental challenge in AM is the link 
between process variables, part quality, and 
machine health. Traditional quality control 
methods, such as post-process inspection using 
Computed Tomography (CT) or metallography, 
are time-consuming and costly, making them 
unsuitable for large-scale production. This has 
driven the industry towards real-time, in-situ 
monitoring and closed-loop control systems. 
These systems rely on a network of sensors to 
collect vast amounts of data during the build 
process, enabling instantaneous analysis and 
decision-making. Real-time monitoring can 
detect critical errors and stop the process, 
thereby preventing further defects from 
propagating. Alternatively, by non-critical 
errors, it can register an alert and notify the end 
user that an error has occurred at a specific 
location. The ideal scenario, as illustrated in a 
simplified closed-loop model (Figure 2), 
involves sensors providing real-time feedback 
to a data processing unit, which in turn can 
implement corrective measures on the AM 
machine to prevent defect propagation and 

ensure the production of zero-defect 
components. 

 
Figure 2. Schematic view and comparison of real-
time monitoring and closed-loop control in AM. 

The present paper outlines a data-driven 
approach to enhance AM process control. It 
details the methodologies for data collection 
and analysis and presents a discussion of four 
key research projects that demonstrate the 
application of these concepts in real-world 
scenarios. 
 
2. METHODOLOGY 
 

Effective data collection in AM is a multi-
faceted process that can be broadly categorized 
into two main types of monitoring: in-situ and 
ex-situ. Ex-situ monitoring concepts, such as 
Computerized Tomography (CT), 
metallography, surface profilometry are 
limited, given that they offer an analysis when 
the possibility of intervention during the 
process is already gone. In-situ Monitoring, on 
the other hand, involves collecting data during 
the AM process itself and, as such, allows for a 
swift intervention when the process gets 
affected by an event. The goal is to capture 
transient process events and material behavior 
in real time. Common sensors used for in-situ 
monitoring include: 

• Optical sensors: High-speed cameras and 
pyrometers are used to capture images of 
the melt pool, spatter, and thermal 
behavior. This data can reveal 
inconsistencies in melting, potential 
defects, and temperature gradients [6,11]. 

• Acoustic sensors: Microphones or acoustic 
emission sensors can detect sound waves 
generated by the process, such as spatter or 
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keyhole formation, which are often 
correlated with defect formation [7]. 

• Infrared sensors: Thermal cameras and 
photodiodes measure temperature 
distribution on the powder bed and within 
the melt pool, providing crucial feedback on 
energy input and heat dissipation [8]. 

• Piezoelectric sensors: Generation of 
impulse or signal by the collision between 
raw material and piezo crystal can also be 
successfully used for monitoring in AM [10] 

The successful implementation of a data-
driven approach requires robust data 
collection, processing and management. Raw 
sensor data, often in the form of high-
resolution images or high-frequency signals, 
can be enormous. Advanced data reduction and 
processing techniques are useful to extract 
meaningful information without losing critical 
detail. This data is used for direct process 
evaluation in Real-Time, but also to train 
Machine Learning (ML) and Artificial 
Intelligence (AI) models to correlate process 
parameters and quality metrics. These models 
perform tasks such as defect prediction, 
process anomaly classification, and predictive 
maintenance [9]. The goal is to move from a 
reactive quality control paradigm to a proactive 
one, where the process is dynamically adjusted 
to prevent defects before they occur. 
 

3. RESULTS & DISCUSSION 
 

The concepts of digitalization, sensing, and 
data-driven process control have been 
demonstrated in several key research projects, 
which are discussed in the following section, 
highlighting their unique contributions to the 
field of AM monitoring. 

3.1. Project CUSTODIAN: Real-Time Laser-
Matter Interaction Monitoring 
 

The CUSTODIAN project [12] is an example 
of an advanced laser-matter interaction. Its 
objectives were to study the role of laser beam 

shaping in L-PBF. The project’s focus, among 
other challenges, was to develop advanced 
sensing techniques to monitor the melt pool 
dynamics and the flow of material and energy 
during laser-based AM. The project leverages 
an MWIR camera based on an uncooled PbSe 
sensor to collect data on the melt pool 
geometry, temperature, and spectral emission. 
The data is then analyzed in real-time to 
identify anomalies (size, shape, etc.) that could 
lead to porosity or improper fusion. These 
sensory inputs are then linked with the final 
mechanical properties of the part, aiming at a 
data-driven feedback loop that ensures part 
quality without extensive post-process 
inspection. Additional to monitoring, a closed-
loop control of the laser source was 
established, trying to control the melt pool 
properties by changing the laser power in RT. 
Although in the case of L-DED process this has 
worked correctly [13], in case of L-PBF the high 
process speed was a relevant obstacle. 

 

 

Figure 3. Concept of the use of fuzzy controller 
architecture and MWIR sensor in CUSTODIAN (up). 

Uncooled PbSe sensor by NIT Europe for the RT 
control, together with the embedded board based 

on Zynq 7000 from Xilinx. © 2018 CUSTODIAN 
Consortium. All rights reserved. 

3.2. Project QuaL-DED: Towards Zero-
Defect Components 
 

The QuaL-DED project [14], aimed to 
develop a full Quality Assessment (QA) system 
for the L-DED process. The project's central 
objective was to ensure process stability and 
pave the way for manufacturing zero-defect 
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metallic components. The system integrated 
three key concepts: 

• Beam Quality Monitoring: Constant 
real-time monitoring of the laser 
beam's quality and stability using 
MWIR camera approach. 

• Energy Input Control: A monitoring 
system for both the melt pool and 
powder flux. The novelty was the 
combined monitoring of the energy-
per-mass input, measuring the powder 
flux by laser scattering principle and the 
melt pool aspect by the MWIR images 
reconstructed in 3D. 

• Inline Quality Monitoring: A special 
novelty was the use of Laser-Induced 
Breakdown spectroscopy to monitor 
the composition of the consolidated 
material as it is being built layer-by-
layer, being this performed in near real 
time. 

 

 

Figure 4. A 3D reconstruction of the melt pool, 
shown together with the powder flow values and 

momentaneous values of main chemical 
constituents in the recently deposited material. © 

2023 QuaL-DED Consortium. All rights reserved. 

This approach, which leverages big data 
analytics and machine learning to analyze 
process parameters and sensor data, has two 

aims. The first one is to record all events, that 
is, mismatches in the process parameters, in an 
HDF5 data structure, and to enable the L-DED 
technician to analyze what went wrong after 
the job, helping also the certification of the 
part. Another goal was to identify behavioral 
patterns for process optimization and analyze 
the influence of component design on process 
stability.  

3.3. Project WAVETAILOR: Digital Twins and 
Sensor Fusion 

 

 

Figure 5. A schematic view of a digital twin concept 
operating over a delocalized LBAM facility. © 2023 

WAVETAILOR Consortium. All rights reserved. 

WAVETAILOR is another pioneering project 
about digitalization in AM, specifically in L-PBF 
and L-DED [15]. This ongoing project's key 
innovation is the use of a robust Digital Twin, a 
virtual replica of the manufacturing process 
that allows for real-time simulation and 
optimization. By integrating multi-scale models 
with machine learning algorithms, the digital 
twin can accurately predict outcomes and 
optimise component designs, thereby reducing 
the reliance on a trial-and-error approach. 

The core component of WAVETAILOR is 
sensor signal fusion. The idea is to combine 
data from multiple disparate sensors to 
enhance the AI/ML algorithms, leading to more 
precise process parameter optimization with 
two main outcomes: less deformation in L-PBF 
parts and better assembly of L-PBF parts which 
have been manufactured in different machines 
at different locations (delocalized 
manufacturing). This approach is instrumental 
in ensuring a substantial reduction in scrap, by 
as much as 80%. WAVETAILOR’s application of 
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Digital Twin technology and sensor fusion 
represents a significant step towards creating 
more reliable AM processes. 

3.4. Project crystAIr: Sensing in Related Fields 
 

While not directly referring to monitoring 
and control of AM production, crystAIr 
demonstrates the application of AI and sensing 
in a related high-tech field: combustion burners 
made by L-PBF. The project is focused on 
developing an AI- and sensing-driven 
combustion burner to address the challenges of 
hydrogen combustion, such as increased 
temperatures and faster combustion, which can 
lead to dangerous flashbacks. The methodology 
is based on a generic, data-driven three-step 
process: unsupervised learning of the intended 
combustion state, classification of different 
combustion states, and detection of early 
indicators of irregularities which could lead to a 
flashback. This is achieved through a distributed 
network of sensors, including a Piezoelectric 
crystal sensor with a sensitivity of 18.5 pC/bar 
and capable of operating up to 600°C [17]. 

 

Figure 6. Hydrogen combustor in premixed and 
flashback mode (left). Prediction of flashback using 
data from a sensorized combustion burner (right) 

[16]. © 2024 crystAIr Consortium. All rights 
reserved. 

The project’s approach of creating a hybrid 
digital twin for unsupervised mixture and flame 
control provides a valuable blueprint for AM. 
The integration of sensors, AI, and digital twin 
technology to monitor a dynamic, high-
temperature process for early anomaly 
detection is a directly transferable concept to 
the AM environment, particularly in L-PBF and 
L-DED, where process stability is paramount. 

 

4. CONCLUSION 
 

The transition of Additive Manufacturing 
into an established industrial technology hinges 
on the ability to ensure consistent quality and 
process reliability. Real-time monitoring and 
data collection are not merely beneficial but are 
essential for the future of AM. The move from 
post-process inspection to in-situ, closed-loop 
control is a critical paradigm shift that enables 
the production of complex, high-performance 
parts with a high degree of confidence. 
Monitoring in even not so mature AM 
technologies is a reality, which is shown 
through the projects discussed in this paper 
provide compelling examples realized. 
However, the closed loop control remains a 
complex challenge, mostly because of process 
speed (e.g. L-PBF). 

The examples shown collectively 
demonstrate that by leveraging sensor 
technology, Big Data analytics, Artificial 
Intelligence, and Digital Twins, it becomes 
possible to achieve unparalleled levels of 
production control. The conclusions drawn 
from these projects in terms of monitoring are 
clear: 

1. Combining data from multiple sensor types 
provides a more comprehensive picture of 
the process than any single sensor could 
offer, hence, the sensor fusion is key. 

2. Machine learning and AI are indispensable 
for making sense of the large and complex 
datasets generated by AM processes. They 
enable the detection of subtle anomalies 
and the prediction of potential defects, at 
the production and part-in-service level. 

3. The use of Digital Twins creates a virtual 
environment and a meeting point for 
process monitoring data, drastically 
reducing trial-and-error and improving 
efficiency. 

4. Although the ultimate goal remains to 
establish a closed-loop control system that 
can automatically adjust process 
parameters in real-time, moving AM closer 
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to a zero-defect manufacturing paradigm, 
the path is complex due to significant 
process speed. 
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