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Abstract: Additive Manufacturing (AM) has evolved into a robust industrial production technology, but its
inherent process complexity poses significant challenges to ensuring consistent part quality and repeatability.
Traditional quality control methods often take place in the post-process phase, being time-consuming and
costly. This paper argues that the future of AM lies in the adoption of real-time, in-situ monitoring and closed-
loop control systems and offers several examples to fundament this claim. The AM systems leverage a
network of sensors to collect vast amounts of data during the build process, enabling immediate analysis and
corrective measures to prevent defect propagation. The methodology of this data-driven approach is
explored, distinguishing between different in-situ monitoring solutions (optical, acoustic, and infrared
sensors) and their practical implementation. A robust data management pipeline, incorporating advanced
data reduction and Al/ML models, is essential to make this approach viable. The paper is discussed through
four key research projects—CUSTODIAN, Qual-DED, WAVETAILOR, and crystAlr—to illustrate these concepts
in practice. These projects collectively demonstrate the importance of sensor fusion, Al-driven models and
digital twins in establishing a self-optimising ecosystem that can significantly reduce scrap, accelerate
development, and pave the way for a zero-defect manufacturing paradigm in AM. The conclusion is that
digitalisation in AM is a critical shift that will secure the technology’s future in advanced industrial production.
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significant portion of the global AM market in

1. INTRODUCTION

Additive Manufacturing (AM), commonly
known as 3D printing, has transitioned from a
rapid prototyping technology to an established
industrial production method, covering the
applications that conventional processes
cannot attend. This shift is particularly evident
in processes like Laser Powder Bed Fusion (L-
PBF) and Laser Directed Energy Deposition (L-
DED), which together accounted for a
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2025, that is 74% of all installed systems [1].

The increasing adoption of AM in critical
sectors, such as aerospace, medical devices,
and energy, highlights the need for robust
quality assurance and process control [2].
However, the complexity of AM processes,
which involve numerous interdependent
parameters like laser power, scan speed,
powder flow, and temperature, makes it
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challenging to ensure part quality and
repeatability [3, 4].
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Figure 1. The niche of AM technologies [2] and the
AM production steps [3]

The fundamental challenge in AM is the link
between process variables, part quality, and
machine health. Traditional quality control
methods, such as post-process inspection using
Computed Tomography (CT) or metallography,
are time-consuming and costly, making them
unsuitable for large-scale production. This has
driven the industry towards real-time, in-situ
monitoring and closed-loop control systems.
These systems rely on a network of sensors to
collect vast amounts of data during the build
process, enabling instantaneous analysis and
decision-making. Real-time monitoring can
detect critical errors and stop the process,
thereby preventing further defects from
propagating. Alternatively, by non-critical
errors, it can register an alert and notify the end
user that an error has occurred at a specific
location. The ideal scenario, as illustrated in a
simplified closed-loop model (Figure 2),
involves sensors providing real-time feedback
to a data processing unit, which in turn can
implement corrective measures on the AM
machine to prevent defect propagation and
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ensure the zero-defect

components.
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Figure 2. Schematic view and comparison of real-
time monitoring and closed-loop control in AM.

The present paper outlines a data-driven
approach to enhance AM process control. It
details the methodologies for data collection
and analysis and presents a discussion of four
key research projects that demonstrate the
application of these concepts in real-world
scenarios.

2. METHODOLOGY

Effective data collection in AM is a multi-
faceted process that can be broadly categorized
into two main types of monitoring: in-situ and
ex-situ. Ex-situ monitoring concepts, such as
Computerized Tomography (cT),
metallography, surface profilometry are
limited, given that they offer an analysis when
the possibility of intervention during the
process is already gone. In-situ Monitoring, on
the other hand, involves collecting data during
the AM process itself and, as such, allows for a
swift intervention when the process gets
affected by an event. The goal is to capture
transient process events and material behavior
in real time. Common sensors used for in-situ
monitoring include:

o Optical sensors: High-speed cameras and
pyrometers are used to capture images of

the melt pool, spatter, and thermal
behavior.  This  data can reveal
inconsistencies in  melting, potential

defects, and temperature gradients [6,11].

e Acoustic sensors: Microphones or acoustic
emission sensors can detect sound waves
generated by the process, such as spatter or
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keyhole formation, which are often

correlated with defect formation [7].

e Infrared sensors: Thermal cameras and
photodiodes measure temperature
distribution on the powder bed and within
the melt pool, providing crucial feedback on
energy input and heat dissipation [8].

e Piezoelectric sensors: Generation of
impulse or signal by the collision between
raw material and piezo crystal can also be
successfully used for monitoring in AM [10]

The successful implementation of a data-
driven approach requires robust data
collection, processing and management. Raw
sensor data, often in the form of high-
resolution images or high-frequency signals,
can be enormous. Advanced data reduction and
processing techniques are useful to extract
meaningful information without losing critical
detail. This data is used for direct process
evaluation in Real-Time, but also to train
Machine Learning (ML) and Artificial
Intelligence (Al) models to correlate process
parameters and quality metrics. These models
perform tasks such as defect prediction,
process anomaly classification, and predictive
maintenance [9]. The goal is to move from a
reactive quality control paradigm to a proactive
one, where the process is dynamically adjusted
to prevent defects before they occur.

3. RESULTS & DISCUSSION

The concepts of digitalization, sensing, and
data-driven process control have been
demonstrated in several key research projects,
which are discussed in the following section,
highlighting their unique contributions to the
field of AM monitoring.

3.1. Project CUSTODIAN: Real-Time Laser-
Matter Interaction Monitoring

The CUSTODIAN project [12] is an example
of an advanced laser-matter interaction. Its
objectives were to study the role of laser beam
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shaping in L-PBF. The project’s focus, among
other challenges, was to develop advanced
sensing techniques to monitor the melt pool
dynamics and the flow of material and energy
during laser-based AM. The project leverages
an MWIR camera based on an uncooled PbSe
sensor to collect data on the melt pool
geometry, temperature, and spectral emission.
The data is then analyzed in real-time to
identify anomalies (size, shape, etc.) that could
lead to porosity or improper fusion. These
sensory inputs are then linked with the final
mechanical properties of the part, aiming at a
data-driven feedback loop that ensures part
quality without extensive  post-process
inspection. Additional to monitoring, a closed-
loop control of the laser source was
established, trying to control the melt pool
properties by changing the laser power in RT.
Although in the case of L-DED process this has
worked correctly [13], in case of L-PBF the high
process speed was a relevant obstacle.

and SWIR/MWIR sensor in CUSTODIAN

Uncooled PbSe sensor from NIT for the RT control (left). Embedded board based on Zyng 7000 from Xilinx

Figure 3. Concept of the use of fuzzy controller
architecture and MWIR sensor in CUSTODIAN (up).
Uncooled PbSe sensor by NIT Europe for the RT
control, together with the embedded board based
on Zynqg 7000 from Xilinx. © 2018 CUSTODIAN
Consortium. All rights reserved.

3.2.  Project Qual-DED: Towards Zero-
Defect Components

The Qual-DED project [14], aimed to
develop a full Quality Assessment (QA) system
for the L-DED process. The project's central
objective was to ensure process stability and
pave the way for manufacturing zero-defect
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metallic components. The system integrated
three key concepts:

e Beam Quality Monitoring: Constant
real-time monitoring of the laser
beam's quality and stability using
MWIR camera approach.

e Energy Input Control: A monitoring
system for both the melt pool and
powder flux. The novelty was the
combined monitoring of the energy-
per-mass input, measuring the powder
flux by laser scattering principle and the
melt pool aspect by the MWIR images
reconstructed in 3D.

¢ Inline Quality Monitoring: A special
novelty was the use of Laser-Induced
Breakdown spectroscopy to monitor
the composition of the consolidated
material as it is being built layer-by-
layer, being this performed in near real
time.

200000

HDF5-based model of

cladded volumen with
registered alert points

i 0

Figure 4. A 3D reconstruction of the melt pool,
shown together with the powder flow values and
momentaneous values of main chemical
constituents in the recently deposited material. ©
2023 Qual-DED Consortium. All rights reserved.

This approach, which leverages big data
analytics and machine learning to analyze
process parameters and sensor data, has two
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aims. The first one is to record all events, that
is, mismatches in the process parameters, in an
HDF5 data structure, and to enable the L-DED
technician to analyze what went wrong after
the job, helping also the certification of the
part. Another goal was to identify behavioral
patterns for process optimization and analyze
the influence of component design on process
stability.

3.3. Project WAVETAILOR: Digital Twins and
Sensor Fusion
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Figure 5. A schematic view of a digital twin concept
operating over a delocalized LBAM facility. © 2023
WAVETAILOR Consortium. All rights reserved.

WAVETAILOR is another pioneering project
about digitalization in AM, specifically in L-PBF
and L-DED [15]. This ongoing project's key
innovation is the use of a robust Digital Twin, a
virtual replica of the manufacturing process
that allows for real-time simulation and
optimization. By integrating multi-scale models
with machine learning algorithms, the digital
twin can accurately predict outcomes and
optimise component designs, thereby reducing
the reliance on a trial-and-error approach.

The core component of WAVETAILOR is
sensor signal fusion. The idea is to combine
data from multiple disparate sensors to
enhance the Al/ML algorithms, leading to more
precise process parameter optimization with
two main outcomes: less deformation in L-PBF
parts and better assembly of L-PBF parts which
have been manufactured in different machines
at different locations (delocalized
manufacturing). This approach is instrumental
in ensuring a substantial reduction in scrap, by
as much as 80%. WAVETAILOR’s application of



40™|CPES

60 Anniversary of the Association of Production Engineering of Serbia

Digital Twin technology and sensor fusion
represents a significant step towards creating
more reliable AM processes.

3.4. Project crystAlr: Sensing in Related Fields

While not directly referring to monitoring
and control of AM production, crystAlr
demonstrates the application of Al and sensing
in a related high-tech field: combustion burners
made by L-PBF. The project is focused on
developing an Al- and sensing-driven
combustion burner to address the challenges of
hydrogen combustion, such as increased
temperatures and faster combustion, which can
lead to dangerous flashbacks. The methodology
is based on a generic, data-driven three-step
process: unsupervised learning of the intended
combustion state, classification of different
combustion states, and detection of early
indicators of irregularities which could lead to a
flashback. This is achieved through a distributed
network of sensors, including a Piezoelectric
crystal sensor with a sensitivity of 18.5 pC/bar
and capable of operating up to 600°C [17].

PREMIXED (desired!

Y

FLASHBACK (undesired)

Figure 6. Hydrogen combustor in premixed and
flashback mode (left). Prediction of flashback using
data from a sensorized combustion burner (right)
[16]. © 2024 crystAlr Consortium. All rights
reserved.

The project’s approach of creating a hybrid
digital twin for unsupervised mixture and flame
control provides a valuable blueprint for AM.
The integration of sensors, Al, and digital twin
technology to monitor a dynamic, high-
temperature process for early anomaly
detection is a directly transferable concept to
the AM environment, particularly in L-PBF and
L-DED, where process stability is paramount.
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4. CONCLUSION

The transition of Additive Manufacturing
into an established industrial technology hinges
on the ability to ensure consistent quality and
process reliability. Real-time monitoring and
data collection are not merely beneficial but are
essential for the future of AM. The move from
post-process inspection to in-situ, closed-loop
control is a critical paradigm shift that enables
the production of complex, high-performance
parts with a high degree of confidence.
Monitoring in even not so mature AM
technologies is a reality, which is shown
through the projects discussed in this paper
provide compelling examples realized.
However, the closed loop control remains a
complex challenge, mostly because of process
speed (e.g. L-PBF).

The examples shown collectively
demonstrate that by leveraging sensor
technology, Big Data analytics, Artificial

Intelligence, and Digital Twins, it becomes
possible to achieve unparalleled levels of
production control. The conclusions drawn
from these projects in terms of monitoring are
clear:

1. Combining data from multiple sensor types
provides a more comprehensive picture of
the process than any single sensor could
offer, hence, the sensor fusion is key.

2. Machine learning and Al are indispensable
for making sense of the large and complex
datasets generated by AM processes. They
enable the detection of subtle anomalies
and the prediction of potential defects, at
the production and part-in-service level.

3. The use of Digital Twins creates a virtual
environment and a meeting point for
process monitoring data, drastically
reducing trial-and-error and improving
efficiency.

4. Although the ultimate goal remains to
establish a closed-loop control system that
can automatically  adjust  process
parameters in real-time, moving AM closer
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to a zero-defect manufacturing paradigm,
the path is complex due to significant
process speed.
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