

ICPES 2025

40th INTERNATIONAL CONFERENCE ON PRODUCTION ENGINEERING - SERBIA 2025

DOI: 10.46793/ICPES25.018P

University of Nis
Faculty of Mechanical
Engineering

Nis, Serbia, 18 - 19th September 2025

FROM PRACTICAL INSIGHTS TO FUTURE INNOVATIONS IN ADDITIVE MANUFACTURING FOR MEDICAL APPLICATIONS

Răzvan PĂCURAR^{1,*}

Orcid: 0000-0002-0554-6120

¹Technical University of Cluj-Napoca, Romania
*Corresponding author: razvan.pacurar@tcm.utcluj.ro

Abstract: Additive Manufacturing (AM) has transformed the medical domain by enabling the creation of patient-specific implants, prosthetics, surgical tools and bioprinted scaffolds. This paper critically reviews the main AM technologies applied in medicine, highlighting their advantages, limitations and future development needs. Material extrusion, photopolymerization, powder bed fusion and bioprinting methods are discussed with emphasis on their applicability in producing medical applications. Special attention is given to issues such as biocompatibility, sterilization, regulatory frameworks and mechanical reliability. Based on the realized analysis opportunities for design improvements, material innovation and technological optimization are emphasized. Looking ahead, emerging approaches such as 4D printing, multi-material systems, Al-driven design and advanced bioprinting are explored as potential solutions that are considered as reliable alternatives to address the current limitations of AM technological solutions that are used for medical applications. This paper emphasizes therefore the ongoing need for innovation to meet evolving medical requirements and ensure safe, sustainable and personalized healthcare solutions.

Keywords: Additive manufacturing, biomedical engineering, medical applications, innovations, future trends

1. INTRODUCTION

Additive Manufacturing (AM), commonly known as 3D printing enables the fabrication of complex medical applications with a level of customization such as cranial implants, dental restorations, prosthetics, surgical guides, and tissue engineering scaffolds with one design freedom that is hard to be reached by conventional methods [1]. In recent years, the integration of digital imaging, computer-aided design and advanced simulation tools has further enhanced the ability to create patient-specific devices that match anatomical and

functional requirements [2]. AM's unique capacity to produce porous and patient-specific structures allows for improved osseointegration, comfort and surgical outcomes [3]. Despite its growing success, AM technologies face significant limitations regarding material biocompatibility, mechanical performance, regulatory approval and scalability. This paper aims to provide one presentation of current svnthetic technologies that are used for medical applications, in order to identify limitations proposing directions for innovations aligned with the medical needs.

2. ADDITIVE MANUFACTURING SOLUTIONS FOR MEDICAL APPLICATIONS

2.1 Material Extrusion Technologies

Material extrusion (MEX) includes Fused Deposition Modeling (FDM), Fused Filament Fabrication (FFF) and Metal Extrusion (ME). These are among the most widely used AM due their accessibility. processes to Applications range from anatomical models and orthoses made of PLA, ABS or TPU to highperformance implants produced from PEEK or PEKK material. Metal Extrusion further extends the possibilities of this approach to titanium and stainless-steel components, which are consolidated after debinding and sintering. The main advantages of material extrusion technologies lie in their relatively low cost, the wide range of available materials and the ease capacity produce patient-specific prototypes. However, these processes are not free of drawbacks. Components often display anisotropic mechanical behavior, a rough surface finish and limited options for sterilization, while their mechanical strength is generally inferior to that of parts obtained through powder bed fusion methods [4]. To overcome these limitations, improvements are several directions. Stronger composites and improved interlayer adhesion could enhance performance, while hybrid reinforcement strategies and validated medical-grade extrusion systems are essential for meeting the strict requirements of biomedical applications.

2.2 Photopolymerization Technologies

Photopolymerization processes include Stereolithography (SLA), Digital Light Processing (DLP), PolyJet and Carbon Digital Light Synthesis (DLS). These methods are widely used in the medical field for the production of surgical guides, dental devices, prosthetics and highly accurate anatomical models. The strengths of photopolymerization technologies lie in their high precision, smooth surface finish, the ability to fabricate highly

complex geometries and, in the case of PolyJet, the capability to print with multiple materials simultaneously. Despite these advantages, several limitations persist. The resins used are often brittle, they have restricted long-term biocompatibility and the materials equipment tend to be costly. Moreover, extensive post-processing steps such as washing and curing add both time and complexity to the workflow [5]. Addressing these challenges requires the development of stronger and more durable biocompatible resins, scalable and efficient post-processing and materials with improved methods, degradation biological resistance to in environments.

2.3 Powder Bed Fusion Technologies

Powder Bed Fusion (PBF) comprises several technologies, including Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Electron Beam Melting (EBM), Binder Jetting and Multi Jet Fusion (MJF). Among additive manufacturing processes, PBF has established itself as one of the standard alternative for producing metallic implants, particularly those made from titanium and cobalt-chrome alloys, which are widely used in orthopedic and dental applications. The major advantages of PBF lie in its ability to deliver high mechanical strength and to design porous structures that promote osseointegration, thereby improving the longterm stability and functionality of implants. These characteristics contribute significantly to the reliability and longevity of medical devices manufactured with this technology. However, PBF also presents important drawbacks. The equipment and raw materials are costly, powder recycling remains a challenge and the process is exposed to the development of residual stresses that may compromise mechanical characteristics of realized parts [6]. Furthermore, extensive post-processing steps, such as support removal and surface finishing are often required to achieve clinically results. Future improvements acceptable should therefore focus on the establishment of standardized powder reuse protocols, the development of advanced finishing techniques, methods to reduce residual stresses and simulation tools that enable optimized process control for medical applications.

2.4 Bioprinting Technologies

Bioprinting extends additive manufacturing into the field of regenerative medicine by using bioinks composed of living cells, hydrogels and growth factors. Several approaches exist, including extrusion-based bioprinting, inkjet printing, photopolymerization techniques and laser-assisted methods. More recently, 4D printing has emerged as a promising frontier, introducing constructs that can adapt their shape or function over time in response to environmental stimuli. The advantages of bioprinting are particularly significant in the biomedical context. It enables the fabrication of tissue scaffolds and organ-like constructs, provides patient-specific regenerative solutions and allows for the deposition of multiple materials in a single structure. Nevertheless, the technology still faces important challenges. Bioinks typically lack sufficient mechanical strength, scalability remains limited and maintaining high levels of cell viability throughout the printing process is difficult [7]. Moreover, standardized protocols for clinical translation are still lacking. To move forward, research and development must focus on creating robust bioinks with customizable properties, developing reliable vascularization techniques and implementing real-time monitoring systems. The integration bioreactors for tissue maturation is also crucial to bridge the gap between laboratory research and clinical application.

3. FUTURE DIRECTIONS IN ADDITIVE MANUFACTURING FOR MEDICAL APPLICATIONS

3.1 Design Innovations using Artificial Intelligence

Future progress in biomedical additive manufacturing will be closely tied to advances

in digital design methods. The use of generative design, topology optimization and patientspecific modeling is already redefining the way implants and scaffolds are conceived [8]. Artificial Intelligence (AI) is expected to play a key role by enabling predictive models for defect detection, automated optimization of process parameters and rapid customization of devices based on patient data. Coupled with digital twins and simulation tools, Al-driven design will allow for virtual validation of implants before fabrication, significantly trial-and-error approaches reducing accelerating clinical translation [9]. The key challenge in this area is integrating medical imaging data, computational design and process control into a seamless workflow that meets regulatory standards.

3.2 Development of Advanced Materials

Another major direction for innovation lies in the development of new customized materials which are adapted to medical needs. Multi-material printing is gaining importance, as it allows the combination of rigid structural materials with flexible or bioactive ones in a construct. Smart and intelligent materials, such as shape-memory polymers or stimuli-responsive hydrogels are being investigated for their potential to adapt to physiological conditions and improve patient outcomes [10]. In the field of bioprinting, research is focused on bioinks that combine mechanical strength with high cell viability, as well as functional additives like nanoparticles or growth factors [11]. Despite these promising directions, challenges remain in ensuring longterm stability, biocompatibility and regulatory approval of novel materials. Standardization and scalability will be critical for widespread adoption in clinical practice.

3.3 Emerging Technological Variants

Beyond materials and design, new technological variants are reshaping the future of biomedical AM. Hybrid manufacturing systems, which integrate additive processes with subtractive machining, coating, or surface treatments offer a pathway to improve surface quality and functional performance. printing, which incorporates time-dependent transformations into printed structures, holds promise for developing adaptive implants and scaffolds that respond dynamically to changes in the biological environment. In bioprinting, progress is moving toward the fabrication of vascularized tissues, organoids and functional organ models through the integration of microfluidics and bioreactors [12]. However, scaling these approaches from laboratory relevant demonstrations clinically to applications remains a formidable challenge and leaves lot of open rooms for innovations. On-going research will have to address reproducibility, cost-efficiency and integration of these technologies into existing medical workflows in the future.

4. CONCLUSION

Manufacturing Additive has already reshaped biomedical engineering by enabling customized, patient-specific solutions. Each technology provides unique opportunities but also faces significant limitations. Improvements in design, materials and process control are crucial to unlock the full potential of AM technologies. Emerging innovations such as multi-material and 4D printing, combined with AI-driven optimization, will push boundaries of personalized medicine and regenerative healthcare in the future. Collaboration between engineers, material scientists and clinicians remains essential to align technological progress with clinical needs in this context.

ACKNOWLEDGEMENT

This research was supported by the ERASMUS+ Partnerships for cooperation and exchanges of practices (KA220) - "Biomedical Innovations through Digital Transformation of Additive Technologies and Knowledge

Exchange - BIOMEDIX" — Project No. 2024-1-LV01-KA220-HED-000255929.

REFERENCES

- [1] M. Salmi: AM Processes in Medical Applications, Materials, Vol. 14, 191, 2021.
- [2] F.J. Birbe: Advances in 3D-Printed Implants for Facial Plastic Surgery, Surgical Techniques Development, Vol. 14, 22, 2025.
- [3] E. Khorasani, B. Vahidi: 3D-Printed Scaffolds for Cranial Bone Regeneration: A Systematic Review of Design, Materials & Computational Optimization, Biotechnology & Bioengineering, Vol. 122, No. 8, pp. 1982–2008, 2025
- [4] Debreceni, A., Z. Buri, S. Bodzás: Linking Process Parameters, Structure & Properties in Material Extrusion AM of Polymers & Composites: A Review, Journal of Manufacturing & Materials Processing, Vol. 9, Art. 286, 2025.
- [5] Y. Hu,X. Wang: Trends in Photopolymerization 3D Printing for Advanced Biomedical Applications: Biocompatible Resins & Process Optimization, Biomacromolecules, Vol. 25, pp. 1023–1045, 2024.
- [6] N.D. Dejene, H.G. Lemu: Current Status and Challenges of Powder Bed Fusion-Based Metal Additive Manufacturing: Literature Review. Metals, Vol. 13, 424, 2023.
- [7] J. Halper: Narrative Review & Guide: State of the Art & Emerging Opportunities of Bioprinting in Tissue Regeneration & Medical Instrumentation, Bioengineering, Vol. 12, 2025.
- [8] P. Koul: A Review of Generative Design Using Machine Learning for Additive Manufacturing, Advances in Mechanical and Materials Engineering, Vol. 41, pp. 145–159, 2024.
- [9] M.S. Ahmmed, L. Khan, L., M.A. Mahmood, F. Liou: Digital Twins, AI & Cybersecurity in AM: A Comprehensive Review of Current Trends & Challenges. Machines, Vol. 13, 691, 2025.
- [10] G. A. Appuhamillage, S. S. Ambagaspitiya, R. S. Dassanayake, A. Wijenayake: 3D and 4D Printing of Biomedical Materials: Current Trends, Challenges, and Prospects, Exploration Engineering Journal, Vol. 5, pp. 17–47, 2024.
- [11] T. M. Castiblanco, J. P. M. Marín, M. Osorio: Natural Macromolecule-Based Bioinks for 3D Bioprinting: A Systematic Review, Biofabrication, Vol. 48, e00407, 2025.

[12] R. Kumar, H. Mehdi, S. S. Bhati, M. Arunkumar, S. Mishra, M. K. Lohumi: A Comprehensive Review of Advancements in Additive Manufacturing for Biomedical Components, Discover Materials, Vol. 5, 152, 2025.