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Abstract: The purpose of this contribution is the deployment of digital manufacturing through new cognitive 
intelligence mechanisms. With the implementation of Industry 4.0 principles, mobile intelligent robots utilized 
as transportation vehicles in the manufacturing system need a higher degree of autonomy to fulfill all the 
requirements of the contemporary market. Although industrial robots are common in manufacturing systems, 
mobile robotics requires the expertise of specialists in cognitive robotics issues to gain international 
competitiveness, particularly for small and medium-sized enterprises. The industrial mobile robots’ 
autonomous subsystems based on deep machine learning provide significantly more flexibility as well as more 
accurate and robust real-time decisions compared to common deterministic sensor-based algorithms. The 
main goal of this paper is to create artificial intelligence-based solutions for cognitive mobile robotics within 
Industry 4.0 using a Machine Learning (ML) based approach, particularly deep learning (convolutional neural 
networks, recurrent neural networks, etc.). The focus of the paper is the generation of new ML-based cognitive 
intelligence mechanisms for obstacle avoidance, decision-making, and visual control of intelligent mobile 
robots, whereas the main goal of the paper is to demonstrate the possibility of integrating intelligent ML-
based algorithms into a high-level cognitive architecture by enabling better understanding of the environment 
in real-time through the processing of higher-quality and more complex sensory data, thereby enhancing the 
overall flexibility of mobile robotic systems within intelligent manufacturing systems. 
 
Keywords: mobile robots, intelligent control systems, digital manufacturing, cognitive intelligence 
mechanisms, deep learning, autonomous systems, visual servoing. 
 

1. INTRODUCTION 
 

In the era of rapid development of 
technological innovation, the cognitive mobile 
robots have enormous potential to influence 
both the industrial and service sectors. In the 
industrial sector, intelligent mobile robots with 
learning mechanisms can support the declining 
workforce with repetitive, dull, and physically 
tiring tasks. However, for intelligent mobile 

robots to be effective in the manufacturing 
sector, many essential skills need to be 
acquired, such as highly accurate positioning 
[1], obstacle avoidance [2], perception [3], and 
decision-making [4]. One of the most promising 
research directions within the robotics domain 
that can fulfill the skills is the utilization of 
machine learning techniques. The limits and 
potential of deep machine learning within 
robotics systems are analyzed in great detail in 
[5]. The three primary axes of research 
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development are learning, embodiment, and 
reasoning, with an aim to reach active learning, 
active manipulation, and integration of 
semantic and geometric reasoning. Active 
learning represents the process of learning 
through interaction with the environment or 
online learning, which differs from the standard 
learning pipeline where the model is trained 
and statically utilized in robotics application. 
Active manipulation is the process of adjusting 
robots pose, to increase the accuracy of the 
environment perception and the probability of 
the successful manipulation process. 
Integration of semantic and geometric 
reasoning includes the process of mapping and 
utilizing not only the geometric properties of 
the environment but also the human-centered 
meaning of the objects and their semantic 
relationships. Two primary approaches to 
achieving the aforementioned skills include the 
development of individual skills and their 
integration trough cognitive high-level 
architectures such as, subsampling architecture 
[6], cognitive maps [7], and Soar [8], or utilizing 
novel deep learning based Vision-Language-
Action (VLA) models [9]. The main primary 
deficiency of the VLA models is in their lack of 
reliability stemming form their black box nature 
and their sensitivity to environmental factors. 
Therefore, in this paper we will analyze the 
three developed deep machine learning-based 
algorithm utilized to achieve the necessary 
skills for the implementation of cognitive 
mobile robots within the manufacturing 
environment. 
 

2. SEMANTIC SEGMENTATION BASED 
OBSTACLE AVOIDANCE 

 

For a mobile robot to work autonomously in 
a dynamic and unstructured industrial 
environment, it needs to be able to avoid 
different obstacles in its path. Therefore, a 
globally optimally planned path needs to have 
local minor deviations necessary to avoid 
obstacles detected with the robot's sensors.  

In this section, we analyze one of the 
approaches for obstacle avoidance based on 
semantic segmentation [2]. The custom version 
of the ResNet model is trained on the SunRGBD 
indoor dataset [10]. Since the experimental 
evaluation is performed on the mobile robot 
RAICO (Robot with Artificial Intelligence based 
COgnition), which has the Nvidia Jetson Nano 
development board, the utilized convolutional 
neural network needed to be lightweight. The 
state machine utilized for the obstacle 
avoidance algorithm is shown in Fig. 1.  

The path the mobile robot takes during the 
obstacle avoidance process can be seen in Fig. 
2. The obstacle detection is performed by 
analyzing semantic maps and checking if there 
is something other than class "floor" in the 
mobile robot's path. An example of one 
obstacle avoidance procedure, shown from 
RAICO's perspective, is illustrated in Fig. 3. As 
can be seen, the floor is labeled with red, yellow 
represents the obstacle, black denotes the 
tables, and teal represents the walls. Images 
generated by the mobile robot and the 
transformation of the image space occupancy 
grid defined with a semantic map to a 2D 
occupancy grid in the mobile robot frame are 
shown in Fig. 4. Green represents the free 
space, while red represents the occupied grids.  

 

 
 

Figure 1. State machine for obstacle avoidance 

algorithm. 
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Figure 2. Mobile robot during path following (left) 

and during obstacle avoidance algorithm (right). 

  

  

  
Figure 3. Semantic segmentation of the mobile 

robot's scene. 

  

  

  
Figure 4. Visualization of the occupancy grid 

generated from the visual system. 

The path the mobile robot took during the 
experimental evaluation can be seen in Fig. 5. 

 
Figure 5. Mobile robot path. 

3. SEMANTIC SEGMENTATION-BASED VISUAL 
SERVOING 

 
One of the key requirements for the efficient 

utilization of cognitive architectures is to reuse 
the data for multiple behaviors. Having that in 
mind, the second behavior considers accurate 
positioning of the mobile robot, based on 
semantic stereo visual servoing. Since the 
standard odometry-based mobile robot 
positioning system cannot provide high levels 
of accuracy, needed for the manipulation tasks 
in the manufacturing environment, the stereo 
visual servoing based on semantic 
segmentation is employed [1].  

The images generated in the laboratory 
manufacturing environment are converted into 
semantic maps by utilizing a convolutional 
neural network (Fig. 6). The dataset comprises 
five classes: four machine tool classes and one 
background class. 

Afterwards, semantic maps generated in the 
desired and current pose (position and 
orientation) are registered [11]. The 
registration represents the process of image 
transformation with an objective function to 
align two images. The semantic maps 
registration can be seen in Fig. 7 for both 
images of the stereo vision system. Combined 
semantic maps of two images (current and 
desired) are shown in the first row. One of the 
initially generated semantic maps is shown with 
shades of pink, while the other is shown with 
green. After the registration process is 
completed, the images are displayed in the 

1) 2) 

3) 4) 

5) 6) 
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second row. If the green and pink elements are 
aligned accurately, they are displayed in gray.  

 
Figure 6. Images and semantic maps generated 

from the stereo visual system. 

 
Figure 7. Semantic map registration process. 

The output of the image registration process 
is the transformation matrix T ∈ ℝ3×3. That 
transformation matrix is utilized to align all the 
control pixels belonging to the same machine in 
the current cc = (uc, vc, 1)T and desired  
cd = (ud, vd, 1)T image (1):  

 c Tcc d= .  (1) 

After the registration is performed and the 
pixels are connected by utilizing the 
transformation matrix, the difference between 
those pixels can be used to determine the 
necessary velocities in the camera frame (2): 

 
cam= ,c Jv  (2) 

where c  is the difference between current and 
desired control pixels, J is the image Jacobian 
matrix [12], and Vcam are the velocities 
generated in the camera frame. Finally, the 
velocities in the mobile robot frame (Vmr ∈ ℝ6×1) 
are generated by utilizing a visual servoing 
controller for k defined control pixels (3): 

 
   
   
   
   
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

-1

1 1

mr

k k

= λ ,

J M c

v

J M c

 (3) 

where λ is the gain value, and M ∈ ℝ6×6 is the 
velocity transformation matrix from the 
camera to the mobile robot frame. 

Both simulation and real-world 
experimental evaluations with the semantic 
segmentation-based stereo visual servoing 
algorithm show high levels of accuracy [1]. 
Initial pose of mobile robot RAICO in simulated 
and real-world experiment can be seen in Fig. 
8. The path mobile robot took during the first 
experiment can be seen in Fig. 9. The accuracy 
of the final pose can also be shown by 
visualizing the absolute pixel difference 
between the final and the desired images (Fig. 
10).  

 
Figure 8. Initial pose of mobile robot RAICO in the 

simulation (left) and real-world (right) 

experimental setup. 

 
Figure 9. The path RAICO took from starting 

(green), intermediate (black), to the final (red) 

pose. The desired position is shown with a blue 

dot. 

 
Figure 10. Absolute pixel difference between the 

desired and final images. 
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The black color represents a low difference 
between pixels, while light blue represents the 
parts of the image with noticeable differences. 
An additional important feature of the 
semantic segmentation-based stereo visual 
servoing is the ability to utilize the images 
generated in simulation for visual servoing, 
which is provided in the last experimental 
evaluation [1]. The desired images (Fig. 11) are 
generated in simulation and utilized in the real-
world environment.  

 
Figure 11. Desired images generated in simulation 

(first row) and real-world current images (second 

row). 

The mobile robot managed to achieve the 
desired pose, which opens a possibility to 
change the desired image adaptably, 
significantly increasing the flexibility of the 
visual servoing algorithm.  

 
4. ACCURACY ESTIMATION SYSTEM BASED 

ON DEEP LEARNING 
 

The last system that utilizes deep learning in 
mobile robot applications is the accuracy 
estimation system that predicts the probability 
of a successful pickup procedure [4]. The input 
variables include the pose of the mobile robot, 
as well as the image of the final scene before 
the pickup procedure is initiated. The standard 
ResNet18 model (Fig. 12) is adapted and 
trained on the custom dataset to predict if the 
pickup procedure will be successful with a 
standard softmax output function. 

The output of the model is utilized to assess 
if the current pose of the mobile robot is 
adequate for the pickup procedure. 

 
Figure 12. ResNet18 model for the probability of 

the pickup success prediction. 

The experimental evaluation showed that 
high confidence of the model is highly 
correlated with the gripping success.  

 
Figure 13. Mobile robot's view of the scene and 

gripping accuracy prediction. 
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However, the overall accuracy of the model 
is 70%. Figures 13 and 14 show the mobile 
robot performing the pickup procedure from 
the mobile robot's perspective and from the 
side view, respectively.  

 

 
Figure 14. Side view of mobile robot RAICO during 

the gripping procedure. 

 

5. CONCLUSION  
 

In this paper, we have presented the results 
regarding the utilization of the intelligent 
learning mechanisms within the cognitive 
mobile robot domain. Three primary 
subsystems utilized to demonstrate the 
advantages of the deep machine learning 
approaches are obstacle avoidance, visual 
servoing, and prediction of the accuracy of 
pickup operation. The obstacle avoidance is 
performed by utilizing semantic segmentation 
of the scene, where the mobile robot RAICO 
can determine the difference between the 
classes of objects in its environment and the 
floor class. After successful semantic 
segmentation, the image is projected to a 2D 
occupancy grid and utilized within the obstacle 
avoidance procedure. The second algorithm 
regards the accurate positioning of the mobile 

robot. For that, we utilized stereo visual 
servoing based on semantic segmentation. 
After the registration of semantic maps, it is 
possible to determine the velocities the mobile 
robot needs to achieve to position itself 
accurately. Lastly, the standard ResNet18 
model is utilized in the image classification 
problem to determine if the current pose is 
adequate for the pickup procedure. Mobile 
robot pose and image information represent 
the input into the desired model. The future 
research direction includes the integration of 
the developed algorithm into a cognitive 
control architecture.  
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