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Abstract: The purpose of this contribution is the deployment of digital manufacturing through new cognitive
intelligence mechanisms. With the implementation of Industry 4.0 principles, mobile intelligent robots utilized
as transportation vehicles in the manufacturing system need a higher degree of autonomy to fulfill all the
requirements of the contemporary market. Although industrial robots are common in manufacturing systems,
mobile robotics requires the expertise of specialists in cognitive robotics issues to gain international
competitiveness, particularly for small and medium-sized enterprises. The industrial mobile robots’
autonomous subsystems based on deep machine learning provide significantly more flexibility as well as more
accurate and robust real-time decisions compared to common deterministic sensor-based algorithms. The
main goal of this paper is to create artificial intelligence-based solutions for cognitive mobile robotics within
Industry 4.0 using a Machine Learning (ML) based approach, particularly deep learning (convolutional neural
networks, recurrent neural networks, etc.). The focus of the paper is the generation of new ML-based cognitive
intelligence mechanisms for obstacle avoidance, decision-making, and visual control of intelligent mobile
robots, whereas the main goal of the paper is to demonstrate the possibility of integrating intelligent ML-
based algorithms into a high-level cognitive architecture by enabling better understanding of the environment
in real-time through the processing of higher-quality and more complex sensory data, thereby enhancing the
overall flexibility of mobile robotic systems within intelligent manufacturing systems.

Keywords: mobile robots, intelligent control systems, digital manufacturing, cognitive intelligence
mechanisms, deep learning, autonomous systems, visual servoing.

1. INTRODUCTION robots to be effective in the manufacturing
sector, many essential skills need to be
acquired, such as highly accurate positioning
[1], obstacle avoidance [2], perception [3], and
technological innovation, the cognitive mobile decision-making [4]. One of the most promising

robots ha_ve enormous potgntial to influence research directions within the robotics domain
both the industrial and service sectors. In the that can fulfill the skills is the utilization of

industrial sector, intelligent mobile robots with
learning mec_hanisms F?n support the decI.ining potential of deep machine learning within
workforce with repetitive, dull, and physically  \opotics systems are analyzed in great detail in
tiring tasks. However, for intelligent mobile [5]. The three primary axes of research

In the era of rapid development of

machine learning techniques. The limits and


https://doi.org/10.46793/ICPES25.002M
mailto:zmiljkovic@mas.bg.ac.rs

40™|CPES

60 Anniversary of the Association of Production Engineering of Serbia

development are learning, embodiment, and
reasoning, with an aim to reach active learning,
active manipulation, and integration of
semantic and geometric reasoning. Active
learning represents the process of learning
through interaction with the environment or
online learning, which differs from the standard
learning pipeline where the model is trained
and statically utilized in robotics application.
Active manipulation is the process of adjusting
robots pose, to increase the accuracy of the
environment perception and the probability of
the  successful manipulation process.
Integration of semantic and geometric
reasoning includes the process of mapping and
utilizing not only the geometric properties of
the environment but also the human-centered
meaning of the objects and their semantic
relationships. Two primary approaches to
achieving the aforementioned skills include the
development of individual skills and their
integration  trough  cognitive  high-level
architectures such as, subsampling architecture
[6], cognitive maps [7], and Soar [8], or utilizing
novel deep learning based Vision-Language-
Action (VLA) models [9]. The main primary
deficiency of the VLA models is in their lack of
reliability stemming form their black box nature
and their sensitivity to environmental factors.
Therefore, in this paper we will analyze the
three developed deep machine learning-based
algorithm utilized to achieve the necessary
skills for the implementation of cognitive
mobile robots within the manufacturing
environment.

2. SEMANTIC SEGMENTATION BASED
OBSTACLE AVOIDANCE

For a mobile robot to work autonomously in
a dynamic and unstructured industrial
environment, it needs to be able to avoid
different obstacles in its path. Therefore, a
globally optimally planned path needs to have
local minor deviations necessary to avoid
obstacles detected with the robot's sensors.

In this section, we analyze one of the
approaches for obstacle avoidance based on
semantic segmentation [2]. The custom version
of the ResNet model is trained on the SUnRGBD
indoor dataset [10]. Since the experimental
evaluation is performed on the mobile robot
RAICO (Robot with Artificial Intelligence based
COgnition), which has the Nvidia Jetson Nano
development board, the utilized convolutional
neural network needed to be lightweight. The
state machine utilized for the obstacle
avoidance algorithm is shown in Fig. 1.

The path the mobile robot takes during the
obstacle avoidance process can be seen in Fig.
2. The obstacle detection is performed by
analyzing semantic maps and checking if there
is something other than class "floor" in the
mobile robot's path. An example of one
obstacle avoidance procedure, shown from
RAICO's perspective, is illustrated in Fig. 3. As
can be seen, the floor is labeled with red, yellow
represents the obstacle, black denotes the
tables, and teal represents the walls. Images
generated by the mobile robot and the
transformation of the image space occupancy
grid defined with a semantic map to a 2D
occupancy grid in the mobile robot frame are
shown in Fig. 4. Green represents the free
space, while red represents the occupied grids.
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Figure 1. State machine for obstacle avoidance
algorithm.
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Figure 2. Mobile robot during path following (left)

and during obstacle avoidance algorithm (right).

Figure 3. Semantic segmentation of the mobile
robot's scene.

Figure 4. Visualization of the occupancy grid

generated from the visual system.

The path the mobile robot took during the
experimental evaluation can be seen in Fig. 5.
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Figure 5. Mobile robot path.

3. SEMANTIC SEGMENTATION-BASED VISUAL
SERVOING

One of the key requirements for the efficient
utilization of cognitive architectures is to reuse
the data for multiple behaviors. Having that in
mind, the second behavior considers accurate
positioning of the mobile robot, based on
semantic stereo visual servoing. Since the
standard odometry-based mobile robot
positioning system cannot provide high levels
of accuracy, needed for the manipulation tasks
in the manufacturing environment, the stereo
visual  servoing based on semantic
segmentation is employed [1].

The images generated in the laboratory
manufacturing environment are converted into
semantic maps by utilizing a convolutional
neural network (Fig. 6). The dataset comprises
five classes: four machine tool classes and one
background class.

Afterwards, semantic maps generated in the
desired and current pose (position and
orientation) are registered [11]. The
registration represents the process of image
transformation with an objective function to
align two images. The semantic maps
registration can be seen in Fig. 7 for both
images of the stereo vision system. Combined
semantic maps of two images (current and
desired) are shown in the first row. One of the
initially generated semantic maps is shown with
shades of pink, while the other is shown with
green. After the registration process is
completed, the images are displayed in the
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second row. If the green and pink elements are
aligned accurately, they are displayed in gray.

. -

Figure 6. Images and semantic maps generated

from the stereo visual system.

B

Figure 7. Semantic map registration process.

The output of the image registration process
is the transformation matrix T € R33. That
transformation matrix is utilized to align all the
control pixels belonging to the same machine in
the current ¢ = (u, v, 1) and desired
Cd = (uq, v, 1) image (1):

c. =Tc,. (1)

After the registration is performed and the
pixels are connected by utilizing the
transformation matrix, the difference between
those pixels can be used to determine the
necessary velocities in the camera frame (2):

c='h’cam’ (2)

where ¢ is the difference between current and
desired control pixels, J is the image Jacobian
matrix [12], and V.m are the velocities
generated in the camera frame. Finally, the
velocities in the mobile robot frame (Vmr € R®1)
are generated by utilizing a visual servoing
controller for k defined control pixels (3):

-1

er=)\ : o (3)
M) e

where A is the gain value, and M € R®® is the
velocity transformation matrix from the
camera to the mobile robot frame.

Both simulation and real-world
experimental evaluations with the semantic
segmentation-based stereo visual servoing
algorithm show high levels of accuracy [1].
Initial pose of mobile robot RAICO in simulated
and real-world experiment can be seen in Fig.
8. The path mobile robot took during the first
experiment can be seen in Fig. 9. The accuracy
of the final pose can also be shown by
visualizing the absolute pixel difference
between the final and the desired images (Fig.
10).

,;i;;__; b b - * "

Figure 8. Initial pose of mobile robot RAICO in the
simulation (left) and real-world (right)
experimental setup.
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Figure 9. The path RAICO took from starting
(green), intermediate (black), to the final (red)

pose. The desired position is shown with a blue
dot.

Figure 10. Absolute pixel difference between the

desired and final images.
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The black color represents a low difference
between pixels, while light blue represents the
parts of the image with noticeable differences.
An additional important feature of the

semantic segmentation-based stereo visual
servoing is the ability to utilize the images
generated in simulation for visual servoing,
which is provided in the last experimental
evaluation [1]. The desired images (Fig. 11) are
generated in simulation and utilized in the real-
world environment.

n. B
0

Figure 11. Desired images generated in simulation

(first row) and real-world current images (second
row).

The mobile robot managed to achieve the
desired pose, which opens a possibility to
change the desired image adaptably,
significantly increasing the flexibility of the
visual servoing algorithm.

4. ACCURACY ESTIMATION SYSTEM BASED
ON DEEP LEARNING

The last system that utilizes deep learning in
mobile robot applications is the accuracy
estimation system that predicts the probability
of a successful pickup procedure [4]. The input
variables include the pose of the mobile robot,
as well as the image of the final scene before
the pickup procedure is initiated. The standard
ResNetl8 model (Fig. 12) is adapted and
trained on the custom dataset to predict if the
pickup procedure will be successful with a
standard softmax output function.

The output of the model is utilized to assess
if the current pose of the mobile robot is
adequate for the pickup procedure.

ResNet18 model
Input (image + pose) [ - Input image
@ - Mobile robot pose
@ - Addition layer

BN - BottleNeck block
BB - Basic Block

224x224x3

56x56x64

28x28x128

7x7x512

Figure 12. ResNet18 model for the probability of
the pickup success prediction.

The experimental evaluation showed that
high confidence of the model is highly
correlated with the gripping success.

Custom | Network 59 FPS

95.29% Grip

Figure 13. Mobile robot's view of the scene and
gripping accuracy prediction.
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However, the overall accuracy of the model
is 70%. Figures 13 and 14 show the mobile
robot performing the pickup procedure from
the mobile robot's perspective and from the
side view, respectively.

Figure 14. Side view of mobile robot RAICO during
the gripping procedure.

5. CONCLUSION

In this paper, we have presented the results
regarding the utilization of the intelligent
learning mechanisms within the cognitive
mobile robot domain. Three primary
subsystems utilized to demonstrate the
advantages of the deep machine learning
approaches are obstacle avoidance, visual
servoing, and prediction of the accuracy of
pickup operation. The obstacle avoidance is
performed by utilizing semantic segmentation
of the scene, where the mobile robot RAICO
can determine the difference between the
classes of objects in its environment and the
floor class. After successful semantic
segmentation, the image is projected to a 2D
occupancy grid and utilized within the obstacle
avoidance procedure. The second algorithm
regards the accurate positioning of the mobile

robot. For that, we utilized stereo visual
servoing based on semantic segmentation.
After the registration of semantic maps, it is
possible to determine the velocities the mobile
robot needs to achieve to position itself
accurately. Lastly, the standard ResNetl8
model is utilized in the image classification
problem to determine if the current pose is
adequate for the pickup procedure. Mobile
robot pose and image information represent
the input into the desired model. The future
research direction includes the integration of
the developed algorithm into a cognitive
control architecture.
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